Modeling Operational Risk Incorporating Reputation Risk: An Integrated Analysis for Financial Firms

Christian Eckert, Nadine Gatzert

© Friedrich-Alexander University Erlangen-Nürnberg (FAU)

This presentation has been prepared for the Actuaries Institute 2015 ASTIN and AFIR/ERM Colloquium. The Institute Council wishes it to be understood that opinions put forward herein are not necessarily those of the Institute and the Council is not responsible for those opinions.
Modeling Operational Risk Incorporating Reputation Risk: An Integrated Analysis for Financial Firms

ASTIN, AFIR/ERM and IACA Colloquia – Innovation & Invention
Sydney, August 24, 2015
Christian Eckert, Nadine Gatzert
Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Introduction: Motivation

• Operational risk: Definition Solvency II
 – “The risk of loss arising from inadequate or failed internal processes, personnel or systems, or from external events.”
 – Operational risk […] shall include legal risks, and exclude risks arising from strategic decisions, as well as reputation risks.”

• Operational risk can be categorized in 7 event types:
 1. Internal fraud
 2. External fraud
 3. Employment practices & workplace safety
 4. Clients, products & business practices
 5. Damage to physical assets
 6. Business disruption & system failures
 7. Execution delivery & process management
Introduction: Motivation

• Can substantially impact a firm’s risk situation, e.g.
 – Société Générale 2008 - €4.9 billion loss due to unauthorized trading
 – UBS rogue trader scandal 2011 - $2.3 billion loss due to unauthorized trading

➢ Adequate measurement and management of op. risk is vital (also required in Basel II/III, Solvency II)

• However: Losses not restricted to pure operational loss!
 – Empirical literature shows: Op. loss events can lead to sign. reputational losses
 (e.g. Gillet et al., 2010: loss in market capitalization; financial firms)
 – Reputational losses especially pronounced for internal and external fraud (e.g. Fiordelisi et al., 2014)
Introduction: Aim

• Previous work on quantifying operational risks typically does not consider reputational losses

• Aim of this paper:
 – Provide a model to quantify operational risk incorporating reputation risk
 – Extend the classical loss distribution approach (LDA) by taking into account reputational losses using the results in the empirical literature (impact on market capitalization)
 – Calibrate the model based on empirical data from the banking industry

➤ Gain a better (holistic) understanding of the consequences of operational risk and the impact of reputation risk
Model framework: Operational risk

• Total loss S^L resulting from op. risk (LDA)

\[S^L = \sum_{i=1}^{I} S^L_i = \sum_{i=1}^{I} \sum_{k=1}^{N^L_i} X^L_{i,k} \]

 - S^L_i: Op. loss of firm L resulting from event type i
 - N^L_i: Number of losses due to event type i
 - $X^L_{i,k}$: Severity of the k-th loss of event type i

• Assumptions (see, e.g., Angela et al., 2008):
 - Independence between $X^L_{i,k}$ (for all i and k)
 - Independence between $X^L_{i,k}$ and N^L_i (for all i and k)
 - N^L_i follows a Poisson process with intensity λ^L_i
 - $X^L_{i,k}$ follows a truncated lognormal distribution
Model framework: Reputation risk

• Integrating reputational losses:
 - Follow empirical literature with focus on the banking industry (e.g. Cummins et al., 2006; Fiordelisi et al., 2014; Perry and De Fontnouvelle, 2005)
 - Rep. loss = Market value loss that exceeds announced op. loss
 - Use cumulative abnormal returns (CAR) for a given event window (τ_1 days before and τ_2 days after announcement date)

 Rep. loss $Y_{i,k}^L$ of firm L following an op. loss $X_{i,k}^L$

\[
Y_{i,k}^L = -M_{0,i,k}^L \cdot CAR_{i,k}^L (\tau_1, \tau_2) \cdot 1\{X_{i,k}^L \geq H_i^R\}
\]

- $M_{0,i,k}^L$: Market capitalization of firm L at announcement date ("day zero") of the k-th op. loss of event type i
- H_i^R: Threshold above which reputational losses occur
Model framework: Reputation risk

➢ Total reputational loss of firm L in the considered period

$$R^L = \sum_{i=1}^{I} \sum_{k=1}^{N_i^L} Y_{i,k}^L = \sum_{i=1}^{I} \sum_{k=1}^{N_i^L} -M_{0,i,k}^L \cdot CAR_{i,k}^L (\tau_1, \tau_2) \cdot 1_{\{X_{i,k}^L \geq H_i^R\}}$$

• Challenges when calibrating the model:

 – Estimating the distribution of the CAR based on empirical data

 – Only very little research according to severity distributions of reputational losses
Model framework: Reputation risk

• Approach 1:

 - Deterministically integrate the reputational loss by using the average CAR (per event type i)

 $$Y_{i,k}^L = -M_{0,i,k}^L \cdot \overline{CAR}_i \left(\tau_1, \tau_2 \right) \cdot 1_{\{X_{i,k}^L \geq H_i^R\}}$$

 ➢ First insight regarding the expected operational and reputational loss depending on the event type
Model framework: Reputation risk

• Approach 2:
 - Assuming a probability distribution for the CAR
 - Estimation based on empirical data (if available)
 - Until now only Cannas et al. (2009) using a small sample
 - Logistic distribution for internal fraud events
 - Assumptions (see Cannas et al., 2009):
 - $CAR_{i,k}^L (\tau_1, \tau_2)$ follows a logistic distribution
 - Independence between the $CAR_{i,k}^L (\tau_1, \tau_2)$ (for all i and k)
 - Independence between $CAR_{i,k}^L (\tau_1, \tau_2)$ and $X_{i,k}^L$ (for all i and k)
 - Independence between $CAR_{i,k}^L (\tau_1, \tau_2)$ and N_i^L (for all i and k)
Model framework: Reputation risk

• Approach 3:
 - Extending the second approach
 - Explicitly taking into account the probability with which reputational losses occur
 - Allows taking into consideration:
 • Firm characteristics
 • Ability for crisis management and crisis communication after a reputation risk event
 ➢ First insight regarding the effects of reducing the probability of reputational losses and the potential of preventive measures
Numerical analysis: Calibration

• Calibration of the model based on external data
 - Necessary to adjust external data to characteristics of considered firm L
 - Using a scaling model proposed in Dahen and Dionne (2010)

• Results derived based on closed-form expressions whenever possible (otherwise Monte Carlo simulation)

• Input parameter for firm L (Dahen and Dionne, 2010):

<table>
<thead>
<tr>
<th>Type</th>
<th>Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>USA</td>
</tr>
<tr>
<td>Market capitalization ML</td>
<td>$9,000$ million</td>
</tr>
<tr>
<td>Total assets AL</td>
<td>$100,000$ million</td>
</tr>
<tr>
<td>Bank capitalization BL</td>
<td>0.1</td>
</tr>
<tr>
<td>Mean salary SL</td>
<td>$50,000$</td>
</tr>
<tr>
<td>Real GDP growth GL</td>
<td>3.7</td>
</tr>
<tr>
<td>Considered period</td>
<td>1 year</td>
</tr>
</tbody>
</table>
Numerical analysis: First approach

- Mean annual operational & reputational loss of firm L in $\$ million

<table>
<thead>
<tr>
<th>Event type</th>
<th>Op. loss</th>
<th>Rep. loss</th>
<th>Total loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>in %</td>
<td>Mean</td>
</tr>
<tr>
<td>Internal fraud</td>
<td>0.25</td>
<td>7.6%</td>
<td>6.39</td>
</tr>
<tr>
<td>External fraud</td>
<td>0.62</td>
<td>19.2%</td>
<td>7.11</td>
</tr>
<tr>
<td>Employment practices & workplace safety</td>
<td>0.08</td>
<td>2.4%</td>
<td>1.05</td>
</tr>
<tr>
<td>Clients, products & business practices</td>
<td>2.17</td>
<td>67.2%</td>
<td>5.48</td>
</tr>
<tr>
<td>Execution delivery & process management</td>
<td>0.12</td>
<td>3.7%</td>
<td>0.42</td>
</tr>
<tr>
<td>Sum</td>
<td>3.23</td>
<td>100%</td>
<td>20.45</td>
</tr>
</tbody>
</table>
Numerical analysis: Event window

- Impact of the choice of the event window

![Event Window Diagram]

- Rep. loss - Execution delivery & process management
- Rep. loss - Clients, products & business practices
- Rep. loss - Employment practices & workplace safety
- Rep. loss - External fraud
- Rep. loss - Internal fraud

Op. loss

in $ million

(-3;3) (-5;5) (-10;10) (-20;20)

event window
Numerical analysis: Firm size

- Impact of the firm size (market capitalization; total assets)

![Chart showing the impact of firm size on mean annual operational and reputation losses. The x-axis represents market capitalization in $ billion, and the y-axis represents losses in $ million. Bars indicate mean annual operational losses and mean annual reputation losses for different levels of market capitalization.]
Numerical analysis: First approach

- Value at risk at the confidence level 99.5%

<table>
<thead>
<tr>
<th>Event type</th>
<th>Op. loss (VaR 99.5%)</th>
<th>Rep. loss (VaR 99.5%)</th>
<th>Total loss (VaR 99.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal fraud</td>
<td>13.1</td>
<td>290.0</td>
<td>303.4</td>
</tr>
<tr>
<td>External fraud</td>
<td>31.4</td>
<td>226.7</td>
<td>259.6</td>
</tr>
<tr>
<td>Employment practices & workplace safety</td>
<td>3.1</td>
<td>145.5</td>
<td>148.6</td>
</tr>
<tr>
<td>Clients, products & business practices</td>
<td>95.6</td>
<td>94.3</td>
<td>206.7</td>
</tr>
<tr>
<td>Execution delivery & process management</td>
<td>6.1</td>
<td>58.7</td>
<td>64.7</td>
</tr>
<tr>
<td>Sum</td>
<td>149.3</td>
<td>815.2</td>
<td>983.0</td>
</tr>
<tr>
<td>VaR of the sum (Ind.)</td>
<td>111.7</td>
<td>290.0</td>
<td>373.8</td>
</tr>
</tbody>
</table>
Summary

• Extend current approaches to quantify operational risk by including reputation risk
 ➢ Comprehensively assess consequences of operational risk

• Calibrate model based on empirical literature

• Findings emphasize that neglecting potential reputational losses may lead to
 ➢ An underestimation of operational risk in general and specific event types in particular (e.g. internal fraud, external fraud)
 ➢ Potential underestimation of relevance of preventive measures regarding operational risk
 ➢ A possible inadequate allocation of resources in ERM

➢ Further research is necessary (empirical and theoretical)
Thank you for your attention.

ASTIN, AFIR/ERM and IACA Colloquia – Innovation & Invention
Sydney, August 24, 2015

Christian Eckert, Nadine Gatzert
Friedrich-Alexander University Erlangen-Nürnberg (FAU)