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Building better PPAC models
Hugh Miller*

Abstract

While generalised linear models (GLMs) have achieved some level of ac-
ceptance in actuarial work, many reserving problems are still performed using
traditional approaches in spreadsheets. A large part of this is that the per-
ceived extra value from using a GLM is low, combined with the uncertainty
of how a GLM compares to a traditional approach. This paper argues that
the GLM approach is preferable, containing virtually all of the benefits of
a traditional model and also permitting powerful extensions and improve-
ments. These improvements to models using GLMs are largely unreported
in the academic literature. The discussion is supported with theoretical and
simulation results.

The paper focuses primarily on the PPAC model (payments per active
claim), a very common valuation technique for long-tailed liabilities.

Keywords: Payments per active claim models; Generalised linear models; Active
claims; Chain ladder; Reserving

1 Introduction

The last few decades has seen many changes in actuarial work due to the improve-
ments in computational power and software. One area where this has met some
resistance is the use of generalised linear models (or GLMs; see McCullagh & Nelder,

1989,

and Dobson, 2002) to replace traditional models such as the the chain ladder

for reserving triangles. Reserving triangles remain a key part of non-life insurance.
There are a number of legitimate reasons for this resistance:

Traditional average methods can be easily performed in spreadsheet software
such as Microsoft Excel. This means the dataset, assumptions and forecast
are easy to inspect simultaneously; changes to assumptions can be easily made
and their impacts quickly seen; the model is interpretable to other users;

Traditional average methods are seen to be relatively fast to implement.

The “value-add” from using a generalised linear model is often unclear, par-
ticularly to non-technical users of reserving estimates.

There are some practical issues with using GLMs, including treatment of zeros
in the data and the ability to impose prior knowledge on model parameters.

A familiarity bias, where conversion to a GLM can appear daunting to actu-
aries not experienced with linear models.

*Correspondence to: Hugh Miller, Taylor Fry, Level 22, 45 Clarence St, Sydney, 2000, Australia.
Email: hugh.miller@taylorfry.com.au



This paper discusses the use of GLMs for these types of reserving models. It
primarily focuses the third and fourth items listed above; GLMs can do everything
a traditional model can do, plus more, and many of the practical issues can be
overcome. However the other items are also addressed, arguing that properly im-
plemented GLMs can be easy to use and standard fits can be implemented quickly.

To make the discussion concrete, a specific type of model, the “payment per
active claim” or PPAC model will be discussed. This has been chosen due to
its common use in modelling long tailed benefits such as workers’ compensation, a
difficult class for reserving. Most of the comments are applicable to other traditional
actuarial reserving models.

This paper is primarily pedagogical; it seeks to be practical in applying GLMs
to reserving problems, bridging actuarial theory and practice. However, there are
some novelties. Most of the ideas in Section 4 are new to the actuarial literature.
Further, some claims as to best practice are supported by theoretical results in the
technical appendix.

The remainder of the paper is structured as follows. Section 2 introduces PPAC
models, GLMs and example datasets in some detail. Section 3 discusses some of
the considerations for all types of PPAC models. Section 4 covers a number of
additional considerations for when PPAC models are built using GLMs. Section 5
provides some further discussion and conclusions. Finally, the theoretical appendix
provides some statistical results that underlie some of the discussion throughout
the paper.

2 Background

2.1 Data We assume a triangle of historical data, with rows representing accident
years ¢ = 1,...,I, columns development years j = 1,...,J and payment year
k=1i+7=1,...,K. The general aim of loss reserving aim is to “complete the
triangle”, to determine payments that will occur in the future related to accidents
incurred in the past. For each cell in the triangle we have two pieces of information;
the number of people “active” on that benefit, n;;, and the amount of payments,
Qi;. Payments are often inflation-adjusted at the beginning of the analysis. While
the definition of active can vary depending on context, one simple and oft-used
definition is the presence of any payment in that year.

The chosen interval above is years, but this is of course arbitrary and different
time increments can be adopted. Other possible extensions to the data, not pursued
in this paper, include:

e The inclusion of other claimant variables. One obvious example is claimant
age, as different ages have different rates of continuance on benefit as well
as permitting explicit retirement or death decrements if desired. If age were
added, then each cell of data (1, j) is split into multiple observations; one for
each observed age group in the cell.

e The inclusion of other time related variables. The behaviour of beneficiaries
is often correlated to macro-economic variables such as unemployment rates



or growth in GDP. These are relatively straightforward to “attach” these
modelling variables to the appropriate diagonals.

2.2 PPAC models The payment per active claim is defined as total payments in
the cell divided by the number of active claims

Pij = Qij/nij (2-1)

A PPAC based valuation is then made up of two models, described below.

The continuance rate model relates to the rate at which active claims become
inactive or closed. It involves the estimation of continuance rate factors c;, which
are typically assumed to vary by development period but not by accident year.

Ni; = CjN; j—1 (2-2)

The ¢; are estimated based on historical ratios of n;;/n; j—1 across the various acci-
dent years ¢. In practice the observed continuance rates will not always be constant
across accidents years, either due to random fluctuations or systematic evolution
over time. For this reason we express equation (2.2) as approximate. Noise is gen-
erally dealt with via averaging continuance rates over a number of accident periods,
while systematic evolution requires some assessment of the trend before selecting c;
for future periods.

The payment model relates to the average payment level per active claim. Again,
these factors P; is typically assumed to vary by development period but not by
accident year.

_ Qy

P~ P, = 2.3
] - (23)

Observed payment levels will not necessarily be constant down a column of the
triangle due to both noise and systematic effects. The most common systematic
effect is superimposed inflation (SI), where succcessive payment years (diagonals)
tend to see increases.

PPAC models have proven to be a popular form of reserving model, allowing
careful study of numbers of active claims, and are useful where there are consistently
sized payments made over an extended period of time. They are used in many
countries, but are particularly popular in Australia to value long term injury claims
such as workers’ compensation.

PPACs are but one example of reserving triangles, which have been studied
extensively in the actuarial literature. Taylor (1986) gives an overview of early
work on reserving triangles. The Mack (1993) model established a distribution-free
formula for the standard error of chain ladder reserves. England & Verall (2002)
extended this to a fuller framework of stochastic claim reserving. The textbook by
Taylor (2000) gives a relatively modern theoretical overview to loss reserving.



Accident Development year

Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1995 105 73 55 47 38 35 33 31 30 29 29 29 29 29 28 27 26 22 22
1996 110 77 56 43 38 33 31 31 31 31 29 29 27 27 25 25 24 24 233
1997 115 85 63 55 50 42 41 40 40 39 37 37 35 35 35 33 32 31.0 30.1
1998 120 85 67 52 41 34 31 29 28 26 26 26 25 25 25 23 22.3 21.6 21.0
1999 126 87 68 50 42 40 38 33 32 31 30 30 29 29 28 27.2 26.3 25.6 248
2000 132 85 63 52 48 40 39 37 36 35 35 34 33 31 30.1 29.2 28.3 27.4 26.6
2001 138 94 78 59 48 45 45 43 40 37 36 36 36 34.9 33.9 329 31.9 309 30.0
2002 144 97 72 60 52 44 43 41 40 40 39 39 38.1 36.9 35.8 347 33.7 32.7 317
2003 151 112 80 61 54 50 49 46 45 44 42 417 40.7 39.5 38.3 37.2 36.0 35.0 339
2004 158 114 91 77 63 55 52 49 46 46 44.8 445 434 421 40.9 39.6 385 37.3 36.2
2005 165 112 89 75 62 54 51 48 47 459 44.7 44.4 433 42.0 40.8 39.6 384 372 36.1
2006 173 113 87 72 58 49 46 43 41.6 40.6 39.6 39.3 384 37.2 36.1 35.0 34.0 32.9 32.0
2007 181 129 105 88 74 66 63 59.2 57.3 55.9 54.5 54.1 52.8 51.2 49.7 48.2 46.7 453 44.0
2008 190 131 103 75 63 57 53.9 50.7 49.0 47.9 46.7 46.3 45.2 43.9 425 413 40.0 38.8 37.7
2009 199 137 106 79 66 58.0 54.9 51.6 49.9 48.8 475 47.2 46.0 44.7 433 42.0 40.8 395 383
2010 208 138 104 90 74.8 65.8 62.3 58.5 56.6 553 53.8 5315 522 50.6 49.1 47.6 46.2 448 435
2011 218 144 104 82.6 68.7 60.4 57.1 53.7 51.9 50.7 49.4 49.1 479 46.5 45.1 437 424 411 39.9
2012 228 156 1183 93.9 78.1 68.7 65.0 61.0 59.1 57.7 56.2 55.8 545 52.8 5il.2 49.7 48.2 46.8 45.4
2013 239 161.1 1221 97.0 80.6 70.9 67.1 63.0 61.0 59.6 58.0 57.6 56.3 54.6 52.9 51.3 49.8 483 46.9

Continuance rate calculations

All 0.6882  0.7672  0.8042  0.8434  0.8810  0.9574 09439 0969 09728 09712 09962 09683  0.9883 0.9724  0.9558  0.9647  0.9200  1.0000
Last 4 0.6741 07582  0.7943  0.8312 0.8794 09464 09394 09674 09766 09744 09929 09762 09836 09741  0.9558  0.9647  0.9200  1.0000
Last 2 0.6726  0.7376  0.8048  0.8377 0.8978  0.9478 009381 009588 09890 09643 10000 09857 09677 09815 0.9333 0.9655 0.9200  1.0000
Selected 0.6741 07582  0.7943  0.8312 0.8794 09464 09394 09674 09766 09744 09929 09762 0.9700 0.9700 0.9700 0.9700 0.9700  0.9700

Table 1: Chain ladder continuance rate model, synthetic data



Accident Development year
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1995 1,000 2,275 2,287 2,752 2,264 2,460 2,627 3,350 2,780 4,653 4,333 3,220 3,569 3,966 4,244 3,995 4,950 5,231 4,075
1996 1,131 2,190 2,269 2,102 2,647 2,464 2,489 2,878 3,318 4,139 2,807 4,083 3,665 4,602 4,417 4,313 5,132 4,774 4,075
1997 1,189 2,122 2,335 2,094 3,370 2,808 2,880 3,008 3,266 3,805 3,961 3,567 4,417 3,924 4,520 4,772 4,441 4,993 4,075
1998 1,166 2,511 2,284 2,244 2,550 2,942 2,878 3,157 3,070 3,759 3,835 4,554 3,511 4,612 4,726 4,810 4,805 4,993 4,075
1999 687 2,091 2,726 2,599 3,853 2,973 3,223 4,261 3,379 3,983 3,485 4,059 4,246 4,851 4,086 4,480 4,805 4,993 4,075
2000 940 2,381 2,718 2,389 3,425 3,110 3,499 3,332 3,290 3,890 4,274 4,738 3,983 4,678 4,435 4,480 4,805 4,993 4,075
2001 1,355 2,732 2,758 2,768 3,204 3,207 3,492 3,401 3,964 4,004 4,499 4,266 3,904 4,486 4,435 4,480 4,805 4,993 4,075
2002 1,195 2,453 3,230 3,344 3,077 3,291 3,539 3,865 4,379 4,032 4,120 4,472 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2003 922 2,509 2,600 3,146 3,428 3,215 3,447 4,529 4,167 4,215 4,695 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2004 1,307 2,577 2,965 3,201 3,147 3,760 3,564 3,665 3,685 4,706 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2005 1,528 2,899 3,055 3,170 3,147 4,245 4,062 3,435 4,198 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2006 1,236 2,823 3,193 3,735 3,735 3,894 3,745 4,171 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2007 1,517 2,862 3,105 3,227 3,249 4,132 4,088 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2008 1,666 3,152 3,041 3,386 3,392 3,911 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2009 1,632 2,773 3,524 3,754 4,041 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2010 1,599 3,148 3,146 3,520 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2011 1,658 3,165 3,321 3,468 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2012 1,658 3,954 3,260 3,468 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
2013 1,631 3,281 3,260 3,468 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075

Payment per active claim, no superimposed inflation assumption. Averages are volume weighted

All 1,376 2,791 2,926 3,059 3,282 3,418 3,435 3,621 3,656 4,135 4,051 4,127 3,925 4,418 4,397 4,480 4,805 4,993 4,075
Last 4 1,637 3,281 3,260 3,468 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075
Last 2 1,645 3,575 3,233 3,629 3,724 4,030 3,943 3,783 3,944 4,466 4,418 4,373 3,942 4,762 4,388 4,787 4,737 4,993 4,075
Selected 3,281 3,260 3,468 3,592 4,052 3,879 3,936 4,098 4,260 4,404 4,394 3,926 4,486 4,435 4,480 4,805 4,993 4,075

Table 2: Payments model, synthetic data



2.3 Traditional spreadsheet PPAC implementations Much of the current practice
of these types of models still use chain ladder based approaches. Tables 1 and 2
show an example of this on a synthetic dataset. We carry this example through
the paper for concreteness. In each table the upper triangle is historical, while the
lower half are projections based on the selections for continuance rates (c¢;) and
payment level (P;). The projected numbers of actives and payment levels can then
be multiplied to obtain all projected future cash flows. We make a few additional
comments about the example:

e The “All” continuance rate estimates are the overall (volume-weighted) aver-
age continuances for all historical entries in the column. If H denotes the set
of i, 7 that are historical (7 4+ j are equal to or less than the current payment
year) then the estimate is:

. Zi:(i,j)e% Nij

¢ =
]
Zi:(i,j)e?—l Nij—1

, for j > 1. (2.4)

The “Last 47 estimate for ¢; is the equivalent sum, but only using the four
most recent diagonals, so for instance the first number in the row is calculated

a 137 + 138 + 144 + 156

199 + 208 + 218 + 228
Similarly “Last 2”7 uses the last two diagonals. The use of “Last X” averages
is a very common way to have the adopted factors emphasise the most recent
trends. The projected values use the last 4 average for the projection for
development periods 1 to 12.

= 0.6741.

e The 0.97 selected for development periods 13 to 18. It is common to “pool”
averages across development periods, particularly in averages of higher uncer-
tainty (continuance rates close to 1, or low numbers of observed claims).

e While not done here, it is common practice to “smooth” the leading diagonal
(with reference to prior observations in the row). This reflects a belief that
unusually high (or low) continuance in a cell is often followed by reversion via
lower (or higher) continuance thereafter.

e The projection of actives starts from the leading diagonal and applies the
selected continuance factor assumptions according to Equation 2.2.

e The “All” payment level rates use a (volume-weighted) average:
o 2iggen Piani
Py = -
Zi:(i,j)e?—l Tij

The “last X” rows are the equivalent averages using only the last few rows of
data. Again, this is common practice to emphasise recent trends.

(2.5)

e There appears to be superimposed inflation present in the payments triangle,
with earlier rows appearing lower than cells below. The selection shown in
Table 2 does not allow for this feature, but we discuss superimposed inflation
in Section 4.2.



e There are a significant number of active claims at development year 18. In
practice the projection would be extended to some larger number of develop-
ment periods to estimate payments in the tail of the liability. Continuance and
payment level assumptions would generally be extrapolated from the latest
observed development periods.

2.4 GLMs for PPAC models A GLM for continuance rate modelling is a typically
a model of the form:

¢y =9 "(X5B) + error, (2.6)
where
X;j = p-vector of predictors (or covariates) corresponding to cell (3, j)
g~' = the inverse of the link function. The log-link ¢~!() = exp(), is common
to ensure positive continuance rates
error = An error term with zero mean

The response of a GLM (and thus the distribution of the error term) is assumed
to be taken from the exponential family of distributions (see Fahrmeier & Tutz,
1994 or Clark & Thayer, 2004), which will then determine the distribution for the
error term. The [ are then estimated by maximum likelihood. It is common for
the first element of X;; to equal 1 for all 7,7 combinations, corresponding to an
intercept term. A input dataset for a GLM has one row per “observation”, so the
data triangle must be converted into a flat file - see Table 3 for an example layout of
the synthetic continuance rate triangle with illustrative covariates. A weight term
for each observation w;; can be included in the maximum likelihood calculation to
reflect the relative importance of each observation. For continuance rate models
the number of active claims in the previous year, w;; = n,;_1, forms a natural
weight. This choice of weight produces volume-weighted estimates of the type seen
in Section 2.3

Of particular interest to this paper is the choice of covariates for the model. Let

I(.A) be the indicator function that takes the value 1 if A is true and zero otherwise.
If

Xii={l(j=1),1(j=2),....1(=J)},
then one parameter estimate will be made for each development period. This setup
has the useful property of recovering the average chain ladder continuance factors

calculated in Table 1 (see also Result 1 in the technical appendix for the proof).
The GLM for payment levels is very similar in application:

Py =g~ (X[;B) + error, (2.7)

A good default weight is w;; = n;;, the number of active claims.



Index Weight Response Covariates

A A A A
[ | | | |
AY DY Prev_active Continaunce Intercept I(j=1) 1(j=2)
1995 1 105 0.695 1 1 0
1995 2 73 0.753 1 0 1
1995 3 55 0.855 1 0 0
1995 4 47 0.809 1 0 0
1995 5 38 0.921 1 0 0
1995 6 35 0.943 1 0 0
1995 7 33 0.939 1 0 0
1995 8 31 0.968 1 0 0
1995 9 30 0.967 1 0 0
1995 10 29 1.000 1 0 0
1995 11 29 1.000 1 0 0
1995 12 29 1.000 1 0 0
1995 13 29 1.000 1 0 0
1995 14 29 0.966 1 0 0
1995 15 28 0.964 1 0 0
1995 16 27 0.963 1 0 0
1995 17 26 0.846 1 0 0
1995 18 22 1.000 1 0 0
1996 1 110 0.700 1 1 0
1996 2 77 0.727 1 0 1
1996 3 56 0.768 1 0 0
1996 4 43 0.884 1 0 0
1996 5 38 0.868 1 0 0

Table 3: Flat file format suitable for GLMs, for the synthetic continuance rate model
example

2.5 GLM equivalents for traditional PPAC formulations One important and straight-
forward result is that the standard types of selections shown in Tables 1 and 2 are
easy to reproduce using a GLM. The previous section introduced a simple develop-
ment year parameterisation:

Model 1: X;; = {I(j = 1),I(j = 2),...,1(j = J)}. (2.8)

Most statistical packages allow this model to be expressed in a shorthand fashion,
with the covariate input a single categorical development year term. The package
will convert this into the required indicators and report back a parameter esti-
mate for each level. For instance in SAS the required model statement is simply
Continuance = DY, plus a statement to identify DY as categorical.

A “Last X” type estimate can be obtained by interacting the development year
effect with a payment year effect. If & = K is the latest payment year, then the
last 4 estimates can be found using a payment year indicators that pick up the last
four diagonals and everything else:

Model 2:

Xy = {I(j=DI(k > K —3),1(j = Ik > K —3),...,1(j = J)I(k > K — 3),
1 = 1)I(k < K — 3),1(j = 2)I(k < K —3),...,1(j = J)I(k < K — 3)}

Note this formulation has some redundancy in the sense that the user is not generally



interested in the parameters corresponding to the older payment years'. These
“bystander” terms are required to ensure the last diagonals are not impacted by
the older years in the maximum likelihood calculation. Setting the weights to these
older years (or deleting them from the flat modelling file altogether) would produce
the last 4 averages without the need for these bystander terms. The SAS model
statement to produce this is Continuance = DY*PY_pre_last4 DY*PY_last4, with
the PY terms the required payment year indicator functions in Model 2 above.

It is also possible to calculate continuance rate averages across development pe-
riods. In our synthetic example, Table 1 adopts a single estimate for DY 13 and
beyond. This can be done in a GLM setup too:

Model 3:

X, = {Ij=0DLk>K-3),...,1(j = 12)I(k > K — 3),1(j > 13)I(k > K — 3),

I(j = DIk < K —3),...,1(j = 12)I(k < K — 3),1(j > 13)I(k < K — 3)}

Continuance rate models Payment level models
DY Model 1 - All Model 2 - Last 4 Model 3 Model 1 - All Model 2 - Last 4
B Exp(B) Beta Exp(Beta) Beta Exp(Beta) Beta Exp(Beta) Beta Exp(Beta)

0 7.2269 1,376 7.4007 1,637
1 -0.374 0.688 -0.394 0.674 -0.394 0.674 7.934 2,791 8.096 3,281
2 -0.265 0.767 -0.277 0.758 -0.277 0.758 7.981 2,926 8.089 3,260
3 -0.218 0.804 -0.230 0.794 -0.230 0.794 8.026 3,059 8.151 3,468
4 -0.170 0.843 -0.185 0.831 -0.185 0.831 8.096 3,282 8.186 3,592
5 -0.127 0.881 -0.129 0.879 -0.129 0.879 8.137 3,418 8.307 4,052
6 -0.044 0.957 -0.055 0.946 -0.055 0.946 8.142 3,435 8.263 3,878
7 -0.058 0.944 -0.063 0.939 -0.063 0.939 8.195 3,621 8.278 3,936
8 -0.031 0.970 -0.033 0.967 -0.033 0.967 8.204 3,657 8.318 4,098
9 -0.028 0.973 -0.024 0.977 -0.024 0.977 8.327 4,135 8.357 4,259
10 -0.029 0.971 -0.026 0.974 -0.026 0.974 8.307 4,051 8.390 4,404
11 -0.004 0.996 -0.007 0.993 -0.007 0.993 8.325 4,127 8.388 4,394
12 -0.032 0.968 -0.024 0.976 -0.024 0.976 8.275 3,925 8.275 3,926
13 -0.011 0.989 -0.017 0.984 -0.034 0.967 8.394 4,418 8.409 4,486
14 -0.028 0.972 -0.026 0.974 -0.034 0.967 8.389 4,398 8.397 4,435
15 -0.045 0.956 -0.045 0.956 -0.034 0.967 8.407 4,480 8.407 4,480
16 -0.036 0.965 -0.036 0.965 -0.034 0.967 8.477 4,805 8.477 4,805
17 -0.083 0.920 -0.083 0.920 -0.034 0.967 8.516 4,993 8.516 4,993
18 0.000 1.000 0.000 1.000 -0.034 0.967 8.313 4,075 8.313 4,075

Table 4: GLM fit results for models described in Section 2.3. Estimates are equiva-
lent to those in Tables 1 and 2.

This discussion leads naturally to the first (well-known) result that traditional
“All” and “Last X” estimates for continuance rate and payment level models can
be exactly reproduced using GLMs. Formally, this is a consequence of Result 1, in
the technical appendix.

'We note however that while not needed for the projection, fitting to the older part of the
triangle can have uses. It gives insight into past changes in the scheme, and allows a better
understanding of variability and distribution of errors.




The table also shows the payment level model results for the Model 1 and 2
formulations. Again, these match the traditional chain ladder estimates. We make
a few further comments on the GLM equivalences:

e The parameter estimates for formulations that have only indicator functions
are independent of distribution choice; the GLM will always return volume
weighted averages. Parameter estimates will vary by distribution choice in
the presence of more complex effects such as linear trends. The distribution
choice also has significant implications for the standard errors and statistical
diagnostics related to the GLM fit.

e The results shown for continuance rates are a Poisson model with log-link,
the response ¢;; and weights n; ;_;. It turns out there is an equivalent formu-
lation for Poisson log-link models using n;; as the response and log(n; ,;_1) as
an offset. This alternative formulation can occasionally be more convenient.
Offsets are discussed further in Section 4.6 in the context of incorporating
continuance rate information into the payment model.

3 Considerations for all types of PPAC models

3.1 Net continuance versus deactivation and re-activation models One common
feature of the claims analysis is that claims under study will deactivate and then
reactivate. If actives are defined by the existence of a payment in the year, this
pattern may correspond to a claim formally closing and reopening, or a period where
the claim remains open but no payments were made. The presence of reactivations
raises the question of whether it is better to model:

e A “net continuance rate”, which calculates the rate of continuance allowing
simultaneously for activations and deactivations

e Separate continuance rate type models for deactivations and reactivations,
which can be combined to estimate total future actives

There are some natural attractions to having separate models. The extra detail
allows a better understanding of the how claims evolve over time, and so emerging
trends in one of these rates can be easier to spot. Further, even if the rates of
deactivation and reactivation are stable over time, then the pattern in the net
deactivation has to implicitly allow for the relative change in numbers active and
inactive, making the net continuance model more challenging.

However the advantages of separate modelling are usually dwarfed by a key
disadvantage - instability in projection. Unless the activation and deactivation rates
are perfectly matched, then any long term projection (particularly those beyond the
observed development length) will often extrapolate poorly. For instance, when the
difference between the deactivation rate and reactivation is set slightly too low, an
unreasonably large liability can occur. We explore the theoretical reasons for this
behaviour in the technical appendix; under mild assumptions the variability of the
joint model will always be higher, which we’ve also verified via simulation.
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For this reason we generally prefer the modelling of net continuance rate, as it
gives more direct control over how actives are extrapolated. The comment applies
equally to chain ladder and GLM approaches. We’ll assume a net continuance rate
model for most of the discussion below.

3.2 Dealing with zeroes in the actives triangle Often zero cells occur in a continu-
ance rate triangle, meaning that a particular accident-development period combina-
tion had no active claims. This is particularly common for triangles where there is
an extensive history, or when the time unit is small (such as a monthly continuance
triangle). This can cause issues in continuance rate estimation, both in traditional
chain ladder approaches (a zero in the denominator can cause errors), and GLMs
(the continuance rate in the cell is undefined).

For both approaches the issue can be ignored if the subsequent development
period is also zero. In this case the observation can be ignored for the purpose of
estimation, and continuance rates estimated using other observations. However, in
cases where there is a non-zero entry (as can happen when modelling net continuance
rate), the implied continuance rate is infinite and unless the observation is altered or
deleted the GLM will typically fail to estimate. For traditional chain ladder models,
this is usually handled by calculating an average continuance rate over enough cells
such that the denominator is non-zero. This gives an unbiased continuance rate
estimate across those cells.

For GLMs, a convenient trick is to set all zeros to some small fraction (such
as 0.001). This leads to a large continuance rate for the subsequent cell, counter-
balanced by a low weight assigned to it (when using n; ;_; as the weight). It can be
shown that as this fraction approaches zero the GLM parameter estimates converge
and are asymptotically unbiased; see Result 3 of the technical appendix. One
limitation of this approach relates to the estimation of the scale parameter. This is
the global estimate of variance for the model (see McCullagh & Nelder, 1989) which
is usually estimated in one of two ways. The Deviance estimate is stable when the
zeros are replaced by small numbers, but the Pearson estimate of scale is unstable.

4 Considerations for GLM-based PPAC models

4.1 Alternative formulations The setup of Section 2.4 used the continuance rate
as the response variable. A common alternative is to model the number of active
claim numbers directly, using a cross-classified structure:

nij =g~ (X5B) + error, (4.1)

For example, a common theoretical structure is to allow X;; to have accident and
development year main effects:

Model 4:



With a log link this is often characterised as

Xij = a(1)B())-

See for instance Chapter 7 of Taylor (2000).

This formulation is not, in general, equivalent to the continuance rate model
of (2.8). If instead the response was the change in actives n;; — n; j_1, then an
equivalence would in fact occur - see for instance England and Verrall (2002). In
most cases the results of (4.1) will be fairly similar to (2.8) - differences depend on
the extent to which there are unusually high or low entries on the latest diagonal.
This alternative formulation can be useful however, as it permits more direct control
over the level of active claims, rather than its decay rate. For example, it is slightly
easier to impose constant active numbers over regions of the triangle using this
setup.

4.2 Superimposed inflation Superimposed inflation (SI) relates to the rate of in-
crease in claims cost by payment period k = i+ j. In traditional spreadsheet based
approaches estimation of SI can be a challenge, because there is rarely a formal ba-
sis for what a “best” estimate of SI should look like. In a GLM context, SI is easy
to estimate by adding a continuous payment year term to the model specification.
This approach will then simultaneously estimate the development factors and the
observed SI. So for instance a “last 4”7 type payment model would take the form
below.

Model 5:

Xy = {kIG=1Ik>K-3),I1G=2Ik>K—3),....1(j = (k> K — 3),
I(j = DI(k < K —3),1(j = 2)I(k < K — 3),...,1(j = J)I(k < K — 3)}

We make some further comments regarding the estimation of SI:

e Assuming the stochastic setup of the GLM is fair (in particular correct choice
of distribution), then the standard error of the SI parameter is useful to indi-
cate the uncertainty of the SI.

e A relatively straightforward way to visually inspect for SI is to conditionally
colour cells of the triangle relative to the average of that development col-
umn. Patterns of colours may motivate separating SI assumptions in different
regions.

e Different payment year linear splines can be tested to estimate SI over different
time periods. This could either test for the presence of any SI over certain
time periods, or test for any change in the level over time.

Estimation of superimposed inflation in a GLM context is thus relatively straight-
forward. Analysis of past superimposed inflation still requires some belief on whether
trends will continue; this is typically only gained through deeper understanding of
an insurance scheme and drivers of cost. It is also possible to go further with
superimposed inflation estimation:
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e Changes in superimposed inflation over time can be tested by adding linear
splines of payment period to the model. These tests can be for a departure
from the previous rate of superimposed inflation, or tests against the hypoth-
esis that the rate has fallen to zero.

e If a particular rate of superimposed inflation is desired, this can be imposed
via an offset (similar to Section 4.6). For log-link models, this offset would
take the form of klog(1 + s), with s the desired rate of SI.

4.8  Setup, fast feedback and diagnostics Traditional GLM diagnostics include:
e Overall measures of fit, such as the AIC or BIC
e Observation level measures of fit, such as the various types of residuals

e Parameter level statistics, such as the estimate, standard error and related
p-value

e Diagnostic plots, such as relativity plots by predictor or actual versus expected
averages by predictor

However these tend not to be the most useful suite of diagnostics in a reserving
context. Ultimately this is because a reserving problem is “extrapolation” (applying
estimates to combinations of (i,j) outside the range of experience) rather than
“Interpolation” (estimating cases that fall within the range of previously observed
cases). This issue has a few consequences. First, overall measures of fit encourage
improving the fit on the historical data, whereas the analyst is primarily interested
in the projection and the fit on the last few diagonals. For example, in the “Last
4”7 setup of model 2, a large number of extra terms could be added to the I(k <
K — 3) component of the model, improving the fit (and diagnostics) on the older
diagonals. However none of these effects would have any impact on the fit on the
last 4 diagonals, and no impact on the projection either. Thus the overall measure
of fit is not always a useful diagnostic.

Second, focusing observation level diagnostics such as residuals does not neces-
sarily improve the model. As an extreme example, if a particular cell has a very
large residual, an analyst might be tempted to add an parameter that affects only
that cell. The residual would then be improved, but the information from that
cell no longer contributes to the extrapolation of the triangle. More generally, only
a subset of the parameters added to the model influence the future extrapolation
region, and some of these terms will actually “remove” information feeding the
projection, which tends to increase the variability.

Third, standard parameter level significance tests are not targeted to the im-
pact on the extrapolation. This is particularly important for the continuance rate
model, as an adopted continuance factor ¢; will affect all development periods from
7 onwards. It is thus more useful to use a measure of “significance” in terms of
its impact on the projection, rather than the standard view within the historical
development column.

13



Given the above comments, what should an analyst be using to assess a fit?
We are not sure that there is a best practice developed, but the following outputs
should be considered:

e Direct application of a fit to the projection half of the triangle: It is
usually not hard to automate the GLM so that a matrix of all historical and
projected numbers are produced with every fit. This is an important element,
as it immediately provides feedback on the reasonableness of the model and
aids in some of the other comparisons below.

e Direct comparison of projection to a reference model: A reference
model might be the one used in a previous valuation, or one produced using
a “default” structure such as the ones described in this paper. Producing a
projection triangle of ratios (current model divided by reference) will highlight
which areas of the fit is extrapolating differently, and allows an analyst to
quickly identify areas to check. These comparisons can be made at a cell
level, as well as an accident year and aggregate level.

e Monitoring of historical and projected cumulants: While it is impor-
tant to look at series of individual columns, it is also useful to examine how the
columns accumulate. This is particularly useful in a continuance rate model,
even if for each given j the adopted c; might look plausible compared to the
historical ¢;;, the products c¢jcj;1 - - - ¢4+ for various j and ¢ might show more
misfit compared to their historical equivalents. One motivation for this type
of checking is because successive continuance rates in historical data are often
not independent, so naive “last X” fits can fail to recognise that the observed
values on the leading diagonal might depend on the prior experience of that
accident period.

Similarly for the payment model, looking at sums over bands of development
periods can reveal systematic biases in estimation.

e Comparison of residuals across continuance and payment models: It
is not unusual to see correlations between residuals in equivalent cells in the
continuance and payment triangles. Part, but probably not all, of this is a
natural consequence of the PPAC model definition; see Section 4.6. Monitor-
ing the presence of correlations reduces the chance of inconsistently applied
assumptions. For example, if an unusually low continuance rate is viewed as
an outlier and ignored, retaining the an unusually low payment level in the
corresponding cell is potentially inconsistent.

Applying these tools, as well as correct use of the usual GLM diagnostics, should
allow a fitting process more tightly integrated with reserve estimation.

4.4 Distribution Choice and stochastic interpretations To this point we have not
considered the distributional considerations and stochastic interpretation of the
GLM approach. However, to many users this represents a core feature of the GLM
approach. Assuming the distributional assumptions are correctly set:
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e The statistical significance of parameters can be estimated, and it is easy to
test whether two continuance factors are likely to be different or not.

e The uncertainty of specific estimates can be calculated and reported

e The uncertainty of the total outstanding claims can be calculated, either the-
oretically (see England and Verrall, 2002) or via the bootstrap (Taylor, 2000,
or England and Verrall, 1999).

Generally an over-dispersed Poisson distribution or a negative binomial distribution
is appropriate for a continuance rate model. The range of possible distirbution
for the payment model is wider, with gamma and Tweedie models both common
but not exhaustive. However, in both cases some care is needed in checking for
heteroscedasticity - often different portions of the triangle will show different levels
of variability. This is particularly true for different development periods and has a
number of causes:

e The changing relative influence of deactivations and (re)activations, in the
case where a net continuance rate model has been fit.

e Some claims may be subject to clear time related limits, that can lead to
greater apparent stability in some development periods

e Different treatments of tranches of claims, either due to claims management,
legislative change or other source.

e Other sources of correlation amongst claims (economic conditions, claiming
trends) might vary over time.

In our experience heteroscedasticity is a significant factor in many continuance
rate and payment triangles. This means that plug-in estimates of outstanding
claim uncertainty should be used with some caution. The issue motivates a couple
of treatments when using GLMs:

e The weight of various cells can be altered so that less weight is placed on areas
of higher variance. This will simultaneously fix the distribution estimation and
increase the estimation accuracy.

e Less emphasis is placed on the traditional variance estimates and more reliance
is placed on other tools such as the bootstrap, which should better recognise
the true variability seen in the dataset.

4.5  Link functions Most GLMs that we have seen use log links for both the con-
tinuance and payment models. This approach has some intuitive appeal. First,
a log link is canonical for a Poisson distribution. Second, the log link leads to
a multiplicative model, which is intuitively attractive for many payment models.
Ultimately the choice of link is of small but significant consequence - choosing a
incorrect link can lead to slightly less accurate estimates and require extra inter-
actions between variables. However in practice the mean estimates produced by
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well fit models under alternative links are often comparable. In simple cases such
as Models 1 and 2 above, the mean estimates will generally be independent of the
choice of link.

However, there are some reasons why exploring alternative link functions for
the continuance rate model might justified. In more complex models where factors
such as age are allowed for, there may be more interactions and parameters which
will make that the choice of link function is more important. The log link permits
estimates significantly larger than 1, since the multiplicative structure can lead to
particularly high estimates in some cells. If the rate of reactivations is zero, than
continuance rates are bounded above by 1, so enforcing this via the adoption of a
logit or probit link makes sense. However in practice, the existence of reactivations
mean that continuance rates above 1 are observed, which can lead to convergence
issues under these links.

Two links that help limit the occurrence of large continuance rate estimates are:

o A scaled logit function g(z) = tlog{(z)/(k — x)}, where the scaling factor k

is the maximum permitted continuance rate throughout

e A tempered log link, that grows at some rate slower than exponential once
the mean is greater than 1. For example:

_ exp(n) ifn<0
g ) = { <P .
n+1 otherwise

The difference between this, a scaled logit link, and a standard log link is
shown in Figure 1.
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Figure 1: Standard log link, tempered log link and scaled logit link functions

4.6 Incorporating continuance rate information into the payment model assump-
tions Suppose that the payment stream represented primarily weekly ongoing ben-
efits to each claimant (as opposed to lump sums), and that the rate at which claims
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deactivate within each time period is roughly uniform. Then the results of the con-
tinuance rate estimation should hold information relevant to the payments model.
If P;; is the average amount paid to a claimant who continues to be active into the
next development period, then P;; would be expected to be equal to P;; for those
that continue, and P;;/2 for those who deactivate. So:

1 1 ¢y
Py = Py {Cij +5( —Cij)} =Py (5 + ?J)

The observed factors log(2 +¢;;/2) can be used as offsets to the payments model,
resulting in easier estimation of the F;;, since the variability due to discontinuance
has been removed.

A similar approach can be used in traditional (non-GLM) contexts by scaling

average payrnents
1
Pllj = Pij (5 + Cz’j2>

before fitting the triangle. The adjustment helps to standardise the payment data;
it corrects for unusually high or low deactivations before modelling.

4.7 Enforcing plausible continuance rates One area where GLM based approaches
still lag behind traditional approaches is the ability to easily modify selected contin-
uance rate (or payment level) assumptions. This typically arises when the analyst
judges there are factors affecting future continuance rates not reflected in the his-
torical data. While ad hoc judgements are usually less desirable than historical
evidence, there are circumstances where they are unavoidable. For example, con-
tinuance rates can be affected by changes in legistlation or claims management
practices.

We propose two options to address the issue. First, the GLM can be imple-
mented in a spreadsheet, so that a subsequent ad hoc selection can be easily applied.
This implementation can be genuine (software such as Microsoft Excel has robust
solver routines that allow maximum likelihood optimizations to be performed), or
via GLM output from statistical software directly linking into a spreadsheet.

Second, there are ways to factor in judgements into the GLM itself. One of the
more direct means is to “penalise” the likelihood function from departing signifi-
cantly from prior beliefs that the analyst may impose. This can be interpreted in a
Bayesian or mixed model sense (see for example McCulloch and Neuhaus, 2001 or
West et al, 2007), or a frequentist approach to variance reduction (see the penalised
regression literature such as Tibshirani 1996, or Chapters 3 and 4 or Hastie et al
2009). Suppose that L(N,¢) is the likelihood function that depends on (among
other things) the observed numbers N = {n;;} and the vector of continuance rates
for the latest diagonals ¢ = {cy,...cy}. Suppose further that ¢* = {c],..., ¢’} is a
set of pre-determined continuance rate assumptions that the analyst prefers. Then
minimising the penalised expression:



with penalty factors A; > 0 will tend to push continuance factors towards the ¢*.
This approach is attractive because the integrated penalisation allows the statistical
advantages of the GLM to be retained while giving some flexibility as the the
adopted factors. The A; can be varied to influence how heavily selections should
be weighted towards the pre-judged estimates - as the \; get very large, the fitted
c¢; will approach the ¢j. However there are challenges to this approach; statistical
software has been slow to recognise the potential of penalised regression, and good
starting choices of \; are not always available.

A similar approach can be used for payment models to impose competing beliefs
on adopted projection levels.

5 Concluding comments

We believe that there are significant advantages to using a GLM approach to reserv-
ing problems such as PPAC models. While there is a cost in terms of complexity
and ad hoc flexibility, these are increasingly minor as we discover the correct ways
to setup models, and as the supporting software evolves. This paper addresses a
host of the pactical issues that allow an analyst to avoid a few of the pitfalls of
GLMs, further enabling their adoption.

Acknowledgements

This research has been supported by a grant from the Institute of Actuaries Aus-
tralia, which I acknowledge with thanks.

References

Clark, D.R., & Thayer, C.A. (2004). A primer on the exponential family of
distributions. Casualty Actuarial Society Spring Forum 117-148.

Dobson, A.J. (2002). An introduction to generalized linear models. CRC Press
LLC.

England, P.D., & Verrall, R.J. (1999). Analytic and bootstrap estimates of pre-
diction errors in claims reserving. Insurance: mathematics and economics, 25(3),
281-293

England, P.D., & Verrall, R.J. (2002). Stochastic claims reserving in general
insurance. British Actuarial Journal, 8(03), 443-518.

Fahrmeier, L. & Tutz, G. (1994). Multivariate statistical modelling based on
generalized linear models. Springer.

Hastie, T., Tibshirani, R. & Friedman, J. (2009). sl The elements of statistical
learning (Vol. 2, No. 1). New York: Springer.

Mack, T. (1993). Distribution-free calculation of the standard error of chain
ladder reserve estimates. Astin bulletin, 23(02), 213-225.

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models. London:
Chapman and Hall.

McCulloch, C.E. & Neuhaus, J.M. (2001). Generalized linear mixed models.
John Wiley & Sons, Ltd.

18



Taylor, G.C. (1986). Claims reserving in non-life insurance (Vol. 1). Elsevier
Science Ltd.

Taylor, G.C. (2000). Loss reserving: an actuarial perspective. Boston: Kluwer
Academic.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 267—288.

West, B.T., WELCH, K.B., and GALECKI, A.T. (2006). Linear mixed models:
a practical guide using statistical software. CRC Press.

19



6 Appendix: Technical details

6.1 Theoretical results This section contains theoretical results supporting the
arguments and claims made in the main body of the paper.

We adopt the same formulation for GLMs as Chapter 6 of Taylor (2000). In
particular, the response Y;; (either the continuance ¢;; or payment level P;;) has the
distribution arising from an exponential family:

yijti; — b(0y)
p(y) = exp { 0)
with a;;(¢) = ¢/w;; and the mean equal to V'(0;;) = g~ (X7 ).

We define a GLM as disjoint if every predictor vector X,; related to cell (i, j)
comprises of a single 1 and otherwise zeros. Models 1, 2 and 3 in the paper all fit this
definition. The definition could be broadened to those that can be reformulated as
disjoint using a series of variable transformations and linear combinations. The first
result is a relatively straightforward property of GLMs, included for completeness.

n c(yij,¢>} (6.1)

Result 1. If a GLM formulation is disjoint, then every parameter estimate is the
weighted mean of those observations for which the corresponding variable is nonzero.

Proof. The disjoint formulation means that the maximum likelihood estimation
can be treated as a series of independent estimations on each of the groups of
observations corresponding to each variable. That is, if H,, is the set of observations
where the mth term of X;; is 1, then the parameter corresponding to X;; can be
viewed as a maximum likelihood estimation of a intercept only model on H,,,. Thus
it is sufficient to prove that for an intercept model (where 6;; = 6 a constant), the
estimate recovered is the weighted mean.
Using (6.1), we see that the log-likelihood is

L= ¢ wii{yi0i — b(0:)} + c(yij, 6)
ijEH
Setting 0;; = 0, differentiating by 6 and setting to zero to maximise the log-
likelihood,

0="> ¢ "wi{y;; — V(6:)} (6.2)
ijeH
and so 5
~1yT / WijYij
g (X7B) =b'(0) =Sy,
If g7 (X7Tp) is the intercept model so the GLM estimate is a constant g~' (X7 3) =
g~ 1(B), then this shows it must be the overall weighted average as required. O

Result 1 has useful implications for the paper - in particular it shows that the
simple formulations of Models 1, 2 and 3 lead to parameters that recover the volume
weighted averages as claimed. This establishes the equivalence to traditional PPAC
model fits.

Result 2 demonstrates the increased volatility of running a deactivation /reactivation
model compared to a single net deactivation model. But first we define:
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e 0;; is the number of inactive claims in cell (3, j).

e For the deactivation/reactivation model, let d; be the (gross) continuance rate
(applied to n; ;—1) and r; the reactivation rate (applied to 0;;_1).

We use capitalised versions (such as N;; for n;;) to denote random variables for
cell (,7). We assume a standard chain ladder setup where ¢; if fixed for each
development year and estimates of ¢; are the volume weighted averages over H.

Result 2. Suppose that d; > 0.5 and that standard chain ladder estimates apply and
are made for c;,d; and r;. Then the variance of one development period projection
var(N;|N; j—1,0; j—1) is lower for the net continuance rate model, compared to the
deactivation/reactivation model.

Proof. For the net deactivation model the number of actives in cell (i, ), Nyj,
depends on n;;_; and the estimate of ¢;, which can be regarded as a binomial
variable with n; ;1 counts and mean c; which is estimated on K =3, 5 n; ;1
observations.

V&I‘(N,L'j |Ni,jfl) = Var(ni,j,lc'j)

s ¢(1—c¢y)
"

Now the net continuance rate is actually a combination of the deactivation and

reactivation rates,
07,,] 1

¢j=dj+ =Ly

nz,] 1

Thus
(dj + 22=2r) (1 — dj — 725=2r))

nL]lj nz]lj

Var(Nij|N,-7j_1) = TL2 1

(2% K
_nmiadi(1—dy) L Mig=10ig17i(1 = 2d5) 0hj1T;
K K K
d;(1—d
< 19 ) (6.3)

K )
where the last uses the d; > 0.5 condition.
For the deactivation/reactivation model, if we similarly define L :== ). et Oij—1

Var(Nij‘Ni,j_h Oi,j_1> = V&I‘(Tli’j_le + Oi,j_le)

d;(1—dj) ri(l—r))
= nij_l']—[('] _'_0227‘74—1% (64)

Comparing (6.3) and (6.4) gives the desired inequality. O

Three comments on Result 2:
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e The result proves the extra volatility over a single projection period, the pro-
jection process of the chain ladder will tend to compound this extra variance
over the full completion of the triangle. However the situation is more com-
plex due to the extra information in the triangle of inactive claims, and so the
simple inequality above is not necessarily true over multiple periods.

e The inequality is fairly “loose”, in that the differences will be significant if
the discarded terms are large. In particular, as the number of reactivations
(the product of o;; and r;) grow, the extra volatility can be significant and
the d; > 0.5 condition unnecessary.

e The d; > 0.5 condition is a fairly weak assumption in practice, given that
PPAC models tend to be longer tail projections with continuance rates closer
to one.

We further illustrate the implications of Result 2 with a simulated example in
Section 6.2 below.

The third result establishes the legitimacy of using a small non-zero entry in
the zero cells of an actives triangle. This idea was introduced in Section 3.2. Let
H* C H be the cells (4, 5) of the triangle such that n; ;_; = 0.

Result 3. Set n; j_1 =6 > 0 for all (i,7) in H. Then as 6 — 0, the log-likelihood
and resulting GLM parameters converge. Further, if the GLM s disjoint then the
estimates converge to the volume weighted average continuance in each region.

Proof. As with Result 1, the disjoint condition means that it is sufficient to prove
that the intercept model converges to the weighted average continuance rate. Using
(6.2) and the setup for response and weight in Section 2.4, the derivative of the
log-likelihood expression becomes

0 = > ¢ myafey —V0)+ DY ¢ 6{ny /6 —V(0,)}

i,jEH* L,jEH*

= ¢! Z {ni; —ni;—1b'(0;;)} — 69" Z b'(6;;)

1,J€H 1,jEH*

As § — 0 the first sum remains constant while the second tends to zero, as required.
For the intercept model, taking the limit and solving for g=1(3) = b/(6) gives:

Zi,je?-t Nij

)
D ijen Mig—1

g (B)=V(0) =

recovering the volume weighted average continuance rate as claimed. O]

22



6.2  Simulation results To further illustrate Result 2, we have constructed a sim-
ple chain ladder problem for an active claim triangle:

e The triangle has 10 development years, plus a year 0.
e At year 0 in each row there are 100 claims active and 100 claims inactive

e (Gross) Continuance rates of 85% and reactivation rates of 1% are assumed
in all development years.

We calculate the standard chain ladder estimates and complete the triangle, us-
ing both a net continuance rate model and a deactivation-reactivation model, as
discussed in Section 3.1. Our metric of interest is the standard deviation of the
sum of the final (eleventh) row of the triangle, Zjl.il ni11j. This will be roughly
proportional to the liability for the most recent accident year, so is a good proxy
for understanding modelling volatility.

Over 5,000 simulations the observed standard deviation in the net continuance
rate model was 16.3, while for the deactivation-reactivation model it was 17.5,
about 7% higher. The distribution of spreads is shown in Figure 2. The fatter tails
of deactivation-reactivation model can be seen, also it also shows less systematic
bias (under-estimation of the mean). This demonstrates that there is a significant
amount of extra volatility introduced by the dual model structure.

iTrue projection

Relative frequency

ARFFARRRGHRERAREECZCEEEEEEZES
Projected number of actives
W Net entce model [ Deact-React model

655
660
665
670
675
680

Figure 2:  Distribution of chain ladder estimates for net continuance and
deactivation-reactivation models

We can see how this ratio between standard deviations varies as simulation
parameters are altered. Figure 3 shows the results if we change the gross continuance
rate, the reactivation rate and the number of starting inactive claims. In each case
we can see the standard deviation of the deactivation-reactivation model is around
double, with some trends visible:

e The gap in standard deviation between the two models is smaller when the
gross continuance rate is lower. This is some way accords with the theoretical
result, and is probably due to the deactivation model dominating the triangle,
leaving less scope for the reactivations to increase variability.
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Figure 3: Results for simulation as parameters are varied

e The gap is smaller as the reactivation rate shrinks. If the reactivation rate was
zero, then there will be no difference at all, as the models would be equivalent

e The gap was largest when the number of starting actives is close to the starting
number of inactives. In particular, the variance of the net continuance rate
model is higher when there are zero starting inactive claims.

In practice these types of comparisons are further complicated by the other features
of the triangle and model selection. However, the general pattern of higher variance
with the deactivation-reactivation model appears a plausible rule of thumb.
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