

Construction of detailed correlation structures across GI business segments

Benjamin Avanzi, Greg Taylor & Bernard Wong

School of Risk and Actuarial Studies
UNSW Australia

Insights, 5 October 2016

The authors and their Linkage Project

- Authors from School of Risk and Actuarial Studies, UNSW
- This work an output in relation to a research grant from the Actuaries Institute
- Also supported by a Linkage Grant awarded by the Australian Research Council
 - Subject: "Modelling claim dependencies for the general insurance industry with economic capital in view..."
 - Term: 3 years+
 - Collaborative between, and jointly funded by Government, industry (Allianz, IAG, Suncorp) and academia

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

The "why should we care?" test (1)

- Who cares about large correlation matrices?
- Risk margins (moderate percentiles of total liabilities)
- Capital margins (high percentiles of total liabilities)
 - Both require consideration of dependencies between business segments
 - For some purposes, the dependencies may be expressed as correlations

The "why should we care?" test (2)

- A large insurer may wish to recognize 50 or more segments
- Simple case
 - Only 50 segments
 - No fine structure within segments
 - 50x50 correlation matrix has 1,225 free entries requiring estimation

The "why should we care?" test (3)

- It gets worse
- A claim triangle may be associated with each business segment
- A dependency between two segments may differ according to the cells of the triangles considered
 - e.g. suppose correlation exists specifically between diagonals

The "why should we care?" test (4)

- Simple case
 - Only 50 segments
 - Triangles only 10x10
 - 45 cells each in lower triangle (projected future)
 - There are now 2,250 cells
 - 2250x2250 correlation matrix has roughly 2.5M free entries requiring estimation

The "why should we care?" test (5)

- So how should one proceed with the generation of these large matrices and be certain of satisfying the following requirements:
 - Matrix is known to be positive definite
 - The magnitude of each entry is reasonable
 - The relative magnitudes of any pair of entries are reasonable
 - Note that, in our simple example, there are roughly 3 trillion pairs

Scope

- We shall mainly discuss correlations
- These give meaningful representations of dependency only for distributions that do not deviate too far from normal
- They are therefore suitable for measurement of insurance claim dependencies not too distant from the mean (moderate percentiles)
- Most of the presentation therefore relates to risk margins rather than capital margins
- But a brief word about capital margins at the end

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

A simple (trivial?) model

- Suppose X, Y, Z independent random variables
- Define new variables

$$A = \alpha_A Z + \beta_A X$$

$$B = \alpha_B Z + \beta_B Y$$

where α 's, β 's are constants > 0

- Evidently, A, B are dependent provided Z is not degenerate
- In fact

$$Cov(A, B) = \alpha_A \alpha_B \sigma_Z^2 \ge 0$$

- This is a common shock model
 - It forms the basis of almost the entire presentation

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Framework and notation (1)

- Consider N business segments
- Each associated with an (upper) claim triangle with entries X labelled by accident and development period
- So $X_{ij}^{(n)}$ denotes the entry (e.g. claim payments) in segment n for accident period i and development period j
- All triangles congruent (same size and shape)
- · We could relax these conditions if we wished
 - Don't require triangles, only 2-D arrays of any shape, possibly with holes
 - Don't require congruence

Framework and notation (2)

 So framework has this appearance

Construction of dependent models

- Dependency might occur:
 - Within a single triangle; or
 - Between a number of different triangles;
 - Or both

Within-triangle dependency (1)

- Suppose one wishes to create dependency between cells (i,j) and (k,ℓ) of triangle n
- Just define the common shock model (for all i, j)

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

 $W^{(n)}$ and all $Z_{ij}^{(n)}$ independent

Common shock component

Idiosyncratic component

Within-triangle dependency (2)

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)} \left(\beta_{ij}^{(n)} > \mathbf{0} \right)$$

It follows that

$$Cov\left[X_{ij}^{(n)}, X_{k\ell}^{(n)}\right] = \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \sigma_{W^{(n)}}^2 + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)}\right)^2 \sigma_{Z_{ij}^{(n)}}^2 > \mathbf{0}$$

- Note that this creates dependency between all cells of triangle \boldsymbol{n}
- Note also that the matrix of covariances is strictly positive definite by construction
 - Same comment for all dependencies considered henceforth

Within-triangle dependency (3)

- The covariance matrix takes the schematic form illustrated
 - Axes labelled by DY within AY
 - Darker shading indicates greater covariance

Row-wise dependency (1)

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

$$Cov \left[X_{ij}^{(n)}, X_{k\ell}^{(n)} \right] = \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \sigma_{W^{(n)}}^2 + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)} \right)^2 \sigma_{Z_{ij}^{(n)}}^2$$

Suppose one wishes to introduce only a row-wise dependency, i.e.

$$Cov\left[X_{ij}^{(n)}, X_{k\ell}^{(n)}\right] > 0 \ iff \ i = k$$

Then simply replace the model by:

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} \mathbf{W}_{i}^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

$$Cov \left[X_{ij}^{(n)}, X_{k\ell}^{(n)} \right] = \frac{\delta_{ik}}{\delta_{ij}} \beta_{k\ell}^{(n)} \sigma_{\mathbf{W}_{i}^{(n)}}^{2} + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)} \right)^{2} \sigma_{Z_{ij}^{(n)}}^{2}$$

Row-wise dependency (2)

Covariance matrix

Column- and diagonal-wise dependency

Row-wise

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W_i^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

Column-wise

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W_{i}^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

Diagonal-wise

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W_{t}^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$
 where $t = i + j - 1$

More general within-array dependencies

 All of the previous forms of dependency can be present simultaneously

$$\begin{split} X_{ij}^{(n)} \\ &= \beta_{(arr)ij}^{(n)} W_{(arr)}^{(n)} + \beta_{(row)ij}^{(n)} W_{(row)i}^{(n)} \\ &+ \beta_{(col)ij}^{(n)} W_{(col)j}^{(n)} + \beta_{(diag)ij}^{(n)} W_{(diag)t}^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)} \end{split}$$

Time series dependencies (1)

- Re-consider the row dependency introduced (see right)
- Dependency occurs only within rows
- Observations from different rows are independent
- One may desire a more graded approach
 - All rows are dependent, but
 - Dependency decreases with increasing distance between rows

Time series dependencies (2)

Consider an AR(1) time series

$$D_t = \theta D_{t-1} + \varepsilon_t, E[\varepsilon_t] = 0, Var[\varepsilon_t] = \sigma_{\varepsilon}^2$$

May be shown that

$$Cov[D_s, D_t] \cong const. \times \theta^{t-s}, t > s$$
 for s, t sufficiently large for the series to have "forgotten" its initial value

• This kind of geometric decay $(0 \le \theta \le 1)$ may be more suitable for correlation between rows (or columns, or diagonals)

Time series dependencies (3)

- Example: dependency between diagonals
- Earlier form of diagonal-wise dependency model:

$$X_{ij}^{(n)} = \beta_{ij}^{(n)} W_t^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$
, all $W_t^{(n)}$ indep.

- Retain this model form but now assume the $W_t^{(n)}$ are AR(1): $W_t^{(n)} = \theta W_{t-1}^{(n)} + \varepsilon_t$
- Then

$$Cov\left[X_{ij}^{(n)}, X_{k\ell}^{(n)}\right] = const. \times \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \theta^{|(i+j)-(k+\ell)|} + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)}\right)^2 \sigma_{Z_{ij}^{(n)}}^2$$

Distance between diagonals

Time series dependencies (4)

- The covariance matrix now takes the schematic form illustrated
 - Axes now conveniently labelled by AY within CY
- Much richer covariance structure

Between-triangle dependencies (1)

- Suppose one wishes to reflect dependency between cells of different triangles, i.e. between $X_{ij}^{(m)}$, $X_{k\ell}^{(n)}$
- Consider diagonal-wise dependency as a (more or less arbitrary) example for explanatory purposes

Between-triangle dependencies

To incorporate diagonal-wise dependency within a triangle:

$$\begin{split} X_{ij}^{(n)} &= \beta_{ij}^{(n)} W_t^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)} \\ \textit{Cov}\left[X_{ij}^{(n)}, X_{k\ell}^{(n)}\right] &= \delta_{i+j,k+\ell} \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \sigma_{W_t^{(n)}}^2 + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)}\right)^2 \sigma_{Z_{ij}^{(n)}}^2 \end{split}$$

To add diagonal-wise dependency between triangles:

$$X_{ij}^{(n)} = \alpha_{ij}^{(n)} W_t + \beta_{ij}^{(n)} W_t^{(n)} + \phi_{ij}^{(n)} Z_{ij}^{(n)}$$

$$Cov \left[X_{ij}^{(m)}, X_{k\ell}^{(n)} \right]$$

$$= \delta_{i+j,k+\ell} \alpha_{ij}^{(m)} \alpha_{k\ell}^{(n)} \sigma_{W_t}^{2} + \delta_{mn} \left[\delta_{i+j,k+\ell} \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \sigma_{W_t^{(n)}}^{2} + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)} \right)^2 \sigma_{Z_{ij}^{(n)}}^{2} \right]$$
Between triangles, Within triangle,

Between triangles, diagonal

Within triangle, diagonal

Within triangle, cell variance

Between-triangle dependencies

- The multi-segment covariance matrix takes the schematic form illustrated
 - Axes now labelled by AY within CY within segment
- Other between-triangle dependencies can be added in similar fashion

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Parameter estimation (1)

- Hitherto, we have been adding common shock terms willy-nilly into the representation of $X_{ij}^{(n)}$, without any thought for how the model is to be implemented
- Ideal if these terms could be formally estimated
 - Some literature on this
- But, in many practical situations, estimation will be heuristic (translation: informed guesswork)
 - Particularly the case for forecasting (reserving)
 - [Niels Bohr: "Prediction is very difficult, especially if it's about the future"]

Parameter estimation (2)

- So we now concentrate on reducing the results to a form that:
 - Is brief and palatable
 - Consists of terms that are:
 - Relatively few in number
 - Intuitive in their interpretation
- But without major loss of accuracy
- This will provide the practitioner with a reasonable chance of reasonable accuracy in heuristic parameter estimation

Parameter reduction (1)

As an example, recall the between-triangle diagonal dependency case

$$Cov\left[X_{ij}^{(m)},X_{k\ell}^{(n)}\right]$$

$$= \delta_{i+j,k+\ell} \alpha_{ij}^{(m)} \alpha_{k\ell}^{(n)} \sigma_{W_t}^2 + \delta_{mn} \left[\delta_{i+j,k+\ell} \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} \sigma_{W_t^{(n)}}^2 + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)} \right)^2 \sigma_{Z_{ij}^{(n)}}^2 \right]$$

• The first simplification arises from noting that the σ terms can all be absorbed into their associated coefficients:

$$Cov \left[X_{ij}^{(m)}, X_{k\ell}^{(n)} \right]$$

$$= \delta_{i+j,k+\ell} \alpha_{ij}^{(m)} \alpha_{k\ell}^{(n)} + \delta_{mn} \left[\delta_{i+j,k+\ell} \beta_{ij}^{(n)} \beta_{k\ell}^{(n)} + \delta_{ij,k\ell} \left(\phi_{ij}^{(n)} \right)^{2} \right]$$

Parameter reduction (2)

$$Cov\left[X_{ij}^{(m)}, X_{k\ell}^{(n)}\right] = \delta_{i+j,k+\ell}\alpha_{ij}^{(m)}\alpha_{k\ell}^{(n)} + \delta_{mn}\left[\delta_{i+j,k+\ell}\beta_{ij}^{(n)}\beta_{k\ell}^{(n)} + \delta_{ij,k\ell}\left(\phi_{ij}^{(n)}\right)^{2}\right]$$

• Special case: $(m, i, j) = (n, k, \ell)$

$$Var\left[X_{ij}^{(m)}\right] = \left(\alpha_{ij}^{(m)}\right)^2 + \left(\beta_{ij}^{(m)}\right)^2 + \left(\phi_{ij}^{(m)}\right)^2$$

- The nature of these three components was noted earlier
- So cell variance decomposes into contributions from:
 - Diagonal common shock across all triangles
 - Diagonal common shock specific to the triangle
 - Idiosyncratic noise specific to cell
- A variance decomposition for each cell determines all coefficients of the dependency structure (apart from θ 's if they are included)
 - $-\theta$'s would be estimated/guesstimated separately

Parameter reduction (3)

- Further mathematical development is omitted
- Proceeding directly to the conclusion, the entire dependency structure is defined by the following parameters
 - For each cell in each triangle
 - The decomposition of the cell variance into its three components
 - For each triangle
 - The value of the AR(1) coefficient if time series effects are included
 - Across all triangles
 - The value of the AR(1) coefficient if a time series common shock across all triangles is included
- A total of 3N + 1 parameter values to be specified

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Numerical example

- Need to consider small dimensions in order that results may be displayed
- Choose N = 2, I = J = 4 (4x4 triangles)
 - 10 observations per triangle
 - 20x20 correlation matrix

Selection of parameter values

- For each cell in each triangle
 - The decomposition of the cell variance into its three components
 - · Same for all cells in a triangle
 - Triangle 1: 0.1, 0.3, 0.6
 - Triangle 2: 0.1, 0.1, 0.8
- For each triangle
 - The value of the AR(1) coefficient if time series effects are included
 - Triangles 1 and 2: 0.3, 0.6
- Across all triangles
 - The value of the AR(1) coefficient if a time series common shock across all triangles is included: 0.2
- Correlation matrix follows very quickly and easily

Example correlation matrix

 Withindiagonal covariances indicated by shading

Class #	CY=	AY=	Class #																			
			1								2											
			CY=																			
			1	2	2	3	3	3	4	4	4	4	1	2	2	3	3	3	4	4	4	4
			AY=																			
			1	1	2	1	2	3	1	2	3	4	1	1	2	1	2	3	1	2	3	4
1	1	1											0.10									
	2	1	0.11										0.02									
	2	2											0.02									
	3	1											0.00									
	3	2											0.00									
	3	3											0.00									
	4	1				_	_						0.00									
	4	2											0.00									
	4	3											0.00									
	4	4		0.03									0.00									
2	1	1											1.00									
	2	1	0.02										0.08									
	2	2											0.08									
	3	1											0.04									
	3	2											0.04									
	3	3											0.04									
	4	1											0.02									
	4	2											0.02									
	4	3											0.02									
	4	4	0.00	0.00	0.00	0.02	0.02	0.02	0.10	0.10	0.10	0.10	0.02	0.04	0.04	0.08	0.08	0.08	0.20	0.20	0.20	1.00

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Current practice

- Noted earlier that correlations alone are not helpful for estimation of the extreme tail
- Common practice is to combine a t-copula with estimated marginal distributions for business segments
- t-copula defined by correlation matrix and degrees of freedom
 - Often practical difficulty in selecting these
- The present work may be extended slightly to inform the calculation of capital margins

Tail dependency

- The choice of t-copula degrees of freedom may be best approached in terms of the coefficient of (upper) tail dependency
 - This is a quantity specific to the extreme tails
 - **Definition:** $\lambda = \lim_{q \to 1^-} Prob[X_2 > F_2^{\leftarrow}(q)|X_1 > F_1^{\leftarrow}(q)]$ where
 - F_i is the d.f. of X_i
 - F_i^{\leftarrow} is the generalized inverse of F_i , i.e. $F_i^{\leftarrow}(y) = \inf\{x: F_i(x) \ge y\}$
- A capital actuary would normally be able to take a view on the limiting conditional probability involved in the definition of the tail dependency

Selection of t-copula

- If the copula is made subject to the correlation matrix calculated earlier, then it will be consistent with any risk margins calculated
- Its tail behavior will be determined by its degrees of freedom
- So
 - Estimate the coefficient of tail dependency for all pairs of segments
 - Tabulate the coefficients of tail dependency given for these pairs according to a t-copula for varying degrees of freedom
 - Select the number of degrees of freedom that gives a rough match (if a match exists)
 - The resulting copula will be consistent with both risk margins and the actuary's views of tail behavior
- Note that the non-existence of a match indicates that a t-copula is inconsistent with these other criteria

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Conclusion

- Dependency models constructed across triangles for multiple business segments
- Flexible models that allow for
 - Within- and between-triangle dependencies
 - Row-, column- and diagonal-wise dependencies (and, indeed, just about anything else)
 - Time series dependencies between different rows, etc.
- Expression of the models in a parametrization that is
 - Frugal in the number of parameters
 - Intuitive in interpretation
- Models applicable directly to risk margins
 - But also applicable to capital margins under a simple extension

Questions?

