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The “why should we care?” test (1)

 Who cares about large correlation matricese
- Risk margins (moderate percenfiles of total
liabllities)
- Capital margins (high percentiles of total
liabllities)
— Both require consideration of dependencies
between business segments

— For some purposes, the dependencies may be
expressed as correlations
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The “why should we care?” test (2)

« A large insurer may wish to recognize
50 or more segments

« Simple case
— Only 50 segments
— No fine structure within segments

— 50x50 correlation matrix has 1,225 free
entries requiring estimation
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The “why should we care?” test (3)

|t getfs worse

* A claim triangle may be associated with
each business segment

« A dependency between two segments
may differ according to the cells of the
triangles considered

— e.g. suppose correlation exists specifically
between diagonals
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The “why should we care?” test (4)

« Simple case
— Only 50 segments

— Triangles only 10x10
« 45 cells each in lower triangle (projected future)

— There are now 2,250 cells

— 2250x2250 correlation matrix has roughly 2.5M
free entries requiring estimation
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The “why should we care?” test (5)

« SO how should one proceed with the
generation of these large matrices and be
certain of safistying the following
requirements:

— Matrix is known to be positive definite
— The magnitude of each enftry is reasonable

— The relative magnitudes of any pair of entries are
reasonable

« Note that, in our simple example, there are roughly 3
10 trillion pairs
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Scope

We shall mainly discuss correlations

These give meaningful representations of dependency
only folr distributions that do not deviate too far from
norma

They are therefore suitable for measurement of
insurance claim dependencies not too distant from the
mean (moderate percentiles)

Most of the presentation therefore relates to risk margins
rather than capital margins

But a brief word about capital margins at the end
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A simple (trivial?) model

Suppose X,Y,Z independent random variables
Define new variables
A=yl + [4X
B =agZ + PgY
where a's, B's are constants >0
Evidently, A, B are dependent provided 7 is not degenerate
In fact
Cov(4,B) = a,agc2 >0
This is a common shock model
— It forms the basis of almost the entire presentation
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Framework and notation (1)

« Consider N business segments

« Each associated with an (upper) claim triangle with entries X
labelled by accident and development period

« SO Xg.') denotes the entry (e.g. claim payments) in segment n
for accident period i and development period j

« All triangles congruent (same size and shape)

« We couldrelax these conditions if we wished

- Eoln”r require triangles, only 2-D arrays of any shape, possibly with
oles

— Don’t require congruence

15
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Framework and notation (2)

. So framework has -
this appearance

x; Business
segment n

Business
segment N

16
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Construction of dependent
models
 Dependency might occur:
— Within a single friangle; or
— Between a number of different triangles;
— Or both

17
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Within-triangle dependency (1)

« Suppose one wishes to create dependency
between cells (i,j) and (k,£) of triangle n

« Just define the common shock model (for all

i,J)

18

(m) _
Xij

:B(n)W(n) n ¢(n)Z(n)

J

I

J

I

W™ and all Zi(}l)
independent

Common shock
component

ldiosyncratic
component
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Within-triangle dependency (2)

X = W m 4 7M™ (ﬁ(m S 0)
« [t follows that
COU[ (n), (n)] ﬁf}”ﬁ,ﬁ’? Ty + 8ij ke (<I5l(,n)) o’ e >0
« Note that this creates dependency be’rween all cells of

triangle n

« Nofte also that the matrix of covariances is strictly positive
definite by construction
— Same comment for all dependencies considered
henceforth

19
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Within-triangle dependency (3)

e The covariance

matrix tfakes the
schematic form
illustrated

— Axes labelled by
DY within AY

— Darker shading
indicates greater
covariance
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Row-wise dependency (1)

2
Cov [Xl(]n), (n)] B ("')ﬁ,?? ﬁ(n) + 5u ke (¢1(1n)) o m
ij
« Suppose one wishes to introduce only a row-wise dependency, i.e.

Cov le(]n), (n)] >0iffi=

« Then simply replace the model by:
X = W™ 4 g™ 7™

2
2
Cov [Xl(]n),X (n)] Oirh ("),B,E’E)GW(n) + 0ij ke (fl?l(,n)) ffzzi(]v_t)

21



Row-wise dependency (2)

« Covariance

Matrix

22




- Column- and diagonal-wise
dependency
« Row-wise
X = Iy 4 7
« Column-wise
XM = g™ 4 ¢ 7
* Diagonal-wise

M _ My, p )5, _ i
N X ,8 {4 qb Z;; wheret =1i+j—1



AR
More general within-array

dependencies
« All of the previous forms of dependency

can be present simultaneously
X

=B IR AL B O AL

(arr)ij (arr) (row)ij (TOW)l

(n) (n) (n) (n) (n) ()
+IB(col)l]VV(col)] lg(dlag)l]VV(dlag)t ¢ Z

24
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Time series dependenmes (1)

25

Re-consider the row dependency
intfroduced (see right)

Dependency occurs only within
rOWS

Observations from different rows
are independent

One may desire a more graded
approach
— Allrows are dependent, but

— Dependency decreases with
iIncreasing distance between rows

AY= DY=

DY=
12 .. 12 .. 1

2 .
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Time series dependencies (2)

26

Consider an AR(1) time series
D, =0D,_{ + &, E[e;] = 0,Var[e] = o/
May be shown that
Cov|Dg, D;] = const.x 85t > s

for s, t sufficiently large for the series to have
“forgotten” its inifial value

This kind of geometric decay (0 < 0 < 1)may be
more suitable for correlation between rows (or
columns, or diagonails)
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Time series dependencies (3)

27

Example: dependency between diagonals
Earlier form of diagonal-wise dependency model:

X(n) ,B(n)W(n) gb(n)ZgL),all W( )Lndep

Retain this model form but now assume the W( ) are AR(T1):
w =W ") + ¢,

Then
Cov | X5, x| = const.x BV B 0NN =0+0 4 5, (d)i(}l)) 0%
Y tj
Distance
between

diagonals
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Time series dependencies (4)

« The covariance matrix e tie1ira1a0ast100000.
now takes the =
schematic form
llustrated
— AXes now conveniently
labelled by AY within CY
« Much richer
covariance structure

28
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Between-iriangle dependencies
(1)
o Suppose one wishes to reflect
dependency between cells of different

triangles, i.e. between X, X,

» Consider diagonal-wise dependency as
a (more or less arbitrary) example for
explanatory purposes

29
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Between-iriangle dependencies
2

 Toincorporate diogonol—wise &p;dency within a friangle:

2
Cov |xV, x| = 5l+] Wﬁ(’”ﬁ(") e+ 6” ee (657) 02wy
ij
« To add diagonal-wise dependency between triangles:

X0 = a W, +50 W + g2

Cov [X(m) x™

2
= 0i4j, k+€“:1 @,y oy, + S [5l+1 k+£/>’(n),3(n) ] wm t Oij ke (9’5 ) Uzz.(’?)]
i t
Between triangles, Within tr|angle, Within triangle,

30 diagonal diagonal cell variance
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Between-iriangle dependencies
( 3) Array# Y= AY= E:ay#

1111111111111111111111

« The multi-segment
covariance matrix takes
the schematic form
illustrated

— Axes now labelled by AY
within CY within segment

« Other between-triangle
dependencies can be
added in similar fashion

31




¢4  Actuaries
A Institute

Overview

* Motivation
« Common shock models
« Application to multiple claim triangles

« Reduction to simple concepts for populating
large correlation matrices

« Numerical example for risk margins
« Capital margins

e Conclusion
32



¢4  Actuaries
A Institute

33

Parameter estimation (1)

Hitherto, we have been adding common shock terms

willy-nilly into the represen’ro’rlon of X] without any
thought for how the model is to be mplemen’red

ldeal if these terms could be formally estimated
— Some literature on this

But, in many practical situations, estimation will be
heuristic (franslation: informed guesswork)

— Particularly the case for forecasting (reserving)

. ]LNieIs B]ohr: “Prediction is very difficult, especially if it's about the
uture”
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Parameter estimation (2)

« SO we now concentrate on reducing the results o
a form that:

— Is brief and palatable

— Consists of terms that are:
« Relatively few in number
* Intuitive in their interpretation

« But without major loss of accuracy

« This will provide the practitioner with a reasonable
chance of reasonable accuracy in heuristic

parameter estimation
34
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Parameter reduction (1)

« As an example, recall the between-triangle diagonal
dependency case

Cov | XV, x|

_ (m) (n) 2
= 5i+j,k+{’aij App O, + Omn

M) H(n) _2 Mm% 2
5i+j,k+{’,8ij kf UWt(n) +5ij,k{’ (¢ij ) O_Zi(}l)]

« The first simplification arises from noting that the o terms can all
be absorbed into their associated coefficients:

(m) ()
2
= e + O [Svsan BB + 00 (98)
35
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Parameter reduction (2)

Cov lX(m) X(n) - 6l+] k+{’al(]m)a](£) + 5mn [51+] k+€ﬁ(n),8]£?) + 61] kt (¢(n)) ]

Special case: (m,i,j) = (n, k, )
Var lXi(}n) = ( (m)) (,B(m)) (¢(m))

The nature of these three components was noted earlier

So cell variance decomposes into conftributions from:

— Diagonal common shock across all triangles

— Diagonal common shock specific to the triangle

— ldiosyncratic noise specific to cell
A variance decomposition for each cell determines all coefficients of
the dependency structure (apart from 8’s if they are included)

— 6's would be estimated/guesstimated separately
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Parameter reduction (3)

Further mathematical development is omitted

Proceeding directly to the conclusion, the enfire dependency
structure is defined by the following parameters

— For each cell in each triangle
+ The decomposition of the cell variance into its three components

— For each triangle
+ The value of the AR(1) coefficient if time series effects are included

— Across all triangles
» The value of the AR(1) coefficient if a time series common shock across all
triangles is included

A total of 3N + 1 parameter values to be specified
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Numerical example

« Need to consider small dimensions Iin
order that results may be displayed

« Choose N = 2,1 =] =4 (4x4 friangles)
— 10 observations per triangle
— 20x20 correlation matrix

39
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Selection of parameter values

For each cell in each triangle

— The decomposition of the cell variance into its three components

» Same for all cells in a friangle
» Triangle 1: 0.1, 0.3, 0.6
« Triangle 2: 0.1, 0.1, 0.8

For each triangle

— The value of the AR(1) coefficient if fime series effects are
included
» Triangles 1 and 2: 0.3, 0.6

Across all triangles

— The value of the AR(1) coefficient if a time series common shock
across all friangles is included: 0.2

Correlation matrix follows very quickly and easily
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ion matrix

Class # CY= AY=

Class #

1

Cy=
1

AY=
1

1.00
0.11
0.11
0.03
0.03
0.03
0.01
0.01
0.01
0.01

0.11
1.00
0.40
0.11
0.11
0.11
0.03
0.03
0.03
0.03

0.11
0.40
1.00
0.11
0.11
0.11
0.03
0.03
0.03
0.03

0.03
0.11
0.11
1.00
0.40
0.40
0.11
0.11
0.11
0.11

0.03
0.11
0.11
0.40
1.00
0.40
0.11
0.11
0.11
0.11

0.03
0.11
0.11
0.40
0.40
1.00
0.11
0.11
0.11
0.11

0.01
0.03
0.03
0.11
0.11
0.11
1.00
0.40
0.40
0.40

0.01
0.03
0.03
0.11
0.11
0.11
0.40
1.00
0.40
0.40

0.01
0.03
0.03
0.11
0.11
0.11
0.40
0.40
1.00
0.40

0.01
0.03
0.03
0.11
0.11
0.11
0.40
0.40
0.40
1.00

0.10
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.02
0.10
0.10
0.02
0.02
0.02
0.00
0.00
0.00
0.00

0.02
0.10
0.10
0.02
0.02
0.02
0.00
0.00
0.00
0.00

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00]
0.00,
0.02
0.02
0.02
0.10
0.10
0.10
0.10

N
A B PP WWWNNR(APPEPPLPPWWWNNERE
A WINEFEF WNEFEFNRR[(AWNRWNRERENRR

0.10
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.02
0.10
0.10
0.02
0.02
0.02
0.00
0.00
0.00
0.00

0.02
0.10
0.10
0.02
0.02
0.02
0.00
0.00
0.00
0.00

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.02
0.02
0.10
0.10
0.10
0.02
0.02
0.02
0.02

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

0.00
0.00
0.00
0.02
0.02
0.02
0.10
0.10
0.10
0.10

1.00
0.08
0.08
0.04
0.04
0.04
0.02
0.02
0.02
0.02

0.08
1.00
0.20
0.08
0.08
0.08
0.04
0.04
0.04
0.04

0.08
0.20
1.00
0.08
0.08
0.08
0.04
0.04
0.04
0.04

0.04
0.08
0.08
1.00
0.20
0.20
0.08
0.08
0.08
0.08

0.04
0.08
0.08
0.20
1.00
0.20
0.08
0.08
0.08
0.08

0.04
0.08
0.08
0.20
0.20
1.00
0.08
0.08
0.08
0.08

0.02
0.04
0.04
0.08
0.08
0.08
1.00
0.20
0.20
0.20

0.02
0.04
0.04
0.08
0.08
0.08
0.20
1.00
0.20
0.20

0.02
0.04
0.04
0.08
0.08
0.08
0.20
0.20
1.00
0.20

0.02
0.04
0.04
0.08]
0.08]
0.08]
0.20
0.20
0.20
1.00
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Current practice

Noted earlier that correlations alone are not helpful for
estimation of the extreme tail

Common pracftice is to combine a t-copula with
estimated marginal distributions for business segments
t-copula defined by correlation matrix and degrees of
freedom

— Often practical difficulty in selecting these

The present work may be extended slightly to inform the
calculation of capital margins
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Tail dependency

« The choice of t-copula degrees of freedom may be best
approached in terms of the coefficient of (upper) tail
dependency

— This is a quantity specific to the extreme tails

— Definition: 1 = qlinll_ Prob|X, > F; (q)|X; > F; (q9)] where
« F;isthe d.f. of X;
- F is the generalized inverse of F;, i.e. F{ (y) = inf{x: Fi(x) = y}
« A capital actuary would normally be able tfo take a view
on the limiting conditional probability involved in the
definition of the tail dependency

44
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Selection of t-copula

If the copula is made subject to the correlation matrix calculated
earlier, then it will be consistent with any risk margins calculated

Its tail behavior will be determined by its degrees of freedom
So
— Estimate the coefficient of tail dependency for all pairs of segments

— Tabulate the coefficients of tail dependency given for these pairs according to
a t-copula for varying degrees of freedom

— Select the number of degrees of freedom that gives a rough match (if a
match exists)

— The resulting copula will be consistent with both risk margins and the actuary’s
views of tail behavior

Note that the non-existence of a match indicates that a t-copula is
inconsistent with these other criteria
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Conclusion

Dependency models constructed across triangles for multiple
business segments

Flexible models that allow for

— Within- and between-triangle dependencies

— Row-, column- and diagonal-wise dependencies (and, indeed,
just about anything else)

— Time series dependencies between different rows, etc.
Expression of the models in a parametrization that is

— Frugal in the number of parameters

— Intuitive in interpretation
Models applicable directly to risk margins

— But also applicable to capital margins under a simple extension
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Questions?






