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The “why should we care?” test (1)
• Who cares about large correlation matrices?

• Risk margins (moderate percentiles of total
liabilities)

• Capital margins (high percentiles of total 
liabilities)
– Both require consideration of dependencies 

between business segments

– For some purposes, the dependencies may be 
expressed as correlations
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The “why should we care?” test (2)

• A large insurer may wish to recognize 
50 or more segments

• Simple case
– Only 50 segments

– No fine structure within segments

– 50x50 correlation matrix has 1,225 free 
entries requiring estimation
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The “why should we care?” test (3)

• It gets worse

• A claim triangle may be associated with 
each business segment

• A dependency between two segments 
may differ according to the cells of the 
triangles considered
– e.g. suppose correlation exists specifically 

between diagonals
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The “why should we care?” test (4)

• Simple case

– Only 50 segments

– Triangles only 10x10

• 45 cells each in lower triangle (projected future)

– There are now 2,250 cells

– 2250x2250 correlation matrix has roughly 2.5M 

free entries requiring estimation
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The “why should we care?” test (5)
• So how should one proceed with the 

generation of these large matrices and be 
certain of satisfying the following 
requirements:
– Matrix is known to be positive definite

– The magnitude of each entry is reasonable

– The relative magnitudes of any pair of entries are 
reasonable
• Note that, in our simple example, there are roughly 3 

trillion pairs
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Scope 
• We shall mainly discuss correlations

• These give meaningful representations of dependency 
only for distributions that do not deviate too far from 
normal

• They are therefore suitable for measurement of 
insurance claim dependencies not too distant from the 
mean (moderate percentiles)

• Most of the presentation therefore relates to risk margins 
rather than capital margins

• But a brief word about capital margins at the end
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A simple (trivial?) model
• Suppose 𝑋, 𝑌, 𝑍 independent random variables

• Define new variables

𝐴 = 𝛼𝐴𝑍 + 𝛽𝐴𝑋
𝐵 = 𝛼𝐵𝑍 + 𝛽𝐵𝑌

where 𝛼’s, 𝛽’s are constants > 0
• Evidently, 𝐴, 𝐵 are dependent provided Z is not degenerate

• In fact

𝐶𝑜𝑣 𝐴, 𝐵 = 𝛼𝐴𝛼𝐵𝜎𝑍
2 ≥ 0

• This is a common shock model
– It forms the basis of almost the entire presentation
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Framework and notation (1)
• Consider 𝑁 business segments

• Each associated with an (upper) claim triangle with entries 𝑋
labelled by accident and development period

• So 𝑿𝒊𝒋
(𝒏)

denotes the entry (e.g. claim payments) in segment 𝑛
for accident period 𝑖 and development period 𝑗

• All triangles congruent (same size and shape)

• We could relax these conditions if we wished
– Don’t require triangles, only 2-D arrays of any shape, possibly with 

holes

– Don’t require congruence
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Framework and notation (2)

• So framework has 

this appearance

Business 
segment 1

Business 
segment 𝑛

Business 
segment 𝑁

⋮

⋮

𝑿𝒊𝒋
(𝒏)
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Construction of dependent 

models
• Dependency might occur:

– Within a single triangle; or

– Between a number of different triangles;

– Or both
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Within-triangle dependency (1)

• Suppose one wishes to create dependency 

between cells 𝑖, 𝑗 and 𝑘, 𝓁 of triangle 𝑛

• Just define the common shock model (for all 

𝑖, 𝑗)

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊(𝑛) + 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

Common shock 
component

Idiosyncratic 
component

𝑊(𝑛) and all 𝑍𝑖𝑗
(𝑛)

independent 
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Within-triangle dependency (2)

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊(𝑛) + 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

𝜷𝒊𝒋
(𝒏)

> 𝟎

• It follows that

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
= 𝛽𝑖𝑗

(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜎
𝑊(𝑛)
2 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2 > 𝟎

• Note that this creates dependency between all cells of 
triangle 𝑛

• Note also that the matrix of covariances is strictly positive 
definite by construction
– Same comment for all dependencies considered 

henceforth
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Within-triangle dependency (3)

• The covariance 
matrix takes the 
schematic form 
illustrated
– Axes labelled by 

DY within AY

– Darker shading 
indicates greater 
covariance

AY= DY= AY=

1 2 3

DY=

1 2 … 1 2 … 1 2 …

1 1

2

…

2 1

2

…

3 1

2

…
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Row-wise dependency (1)
𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊(𝑛) + 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
= 𝛽𝑖𝑗

(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜎
𝑊(𝑛)
2 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2

• Suppose one wishes to introduce only a row-wise dependency, i.e. 

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
> 0 𝑖𝑓𝑓 𝑖 = 𝑘

• Then simply replace the model by:

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑾𝒊

(𝒏)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
= 𝜹𝒊𝒌𝛽𝑖𝑗

(𝑛)
𝛽𝑘𝓁
(𝑛)
𝝈
𝑾𝒊

(𝒏)
𝟐 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2
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Row-wise dependency (2)

• Covariance 

matrix

AY= DY= AY=

1 2 3

DY=

1 2 … 1 2 … 1 2 …

1 1

2

…

2 1

2

…

3 1

2

…
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Column- and diagonal-wise 

dependency 
• Row-wise

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊𝑖

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

• Column-wise

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊𝒋

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

• Diagonal-wise

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊𝒕

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

where 𝒕 = 𝒊 + 𝒋 − 𝟏
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More general within-array 

dependencies
• All of the previous forms of dependency 

can be present simultaneously

𝑋𝑖𝑗
(𝑛)

= 𝛽(𝑎𝑟𝑟)𝑖𝑗
(𝑛)

𝑊(𝑎𝑟𝑟)
(𝑛)

+ 𝛽(𝑟𝑜𝑤)𝑖𝑗
(𝑛)

𝑊𝑟𝑜𝑤 𝑖
(𝑛)

+ 𝛽(𝑐𝑜𝑙)𝑖𝑗
(𝑛)

𝑊(𝑐𝑜𝑙)𝑗
(𝑛)

+ 𝛽(𝑑𝑖𝑎𝑔)𝑖𝑗
(𝑛)

𝑊𝑑𝑖𝑎𝑔 𝑡
(𝑛)

+ 𝜙𝑖𝑗
(𝑛)
𝑍𝑖𝑗
(𝑛)
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Time series dependencies (1)
• Re-consider the row dependency 

introduced (see right)

• Dependency occurs only within 
rows

• Observations from different rows 
are independent

• One may desire a more graded 
approach
– All rows are dependent, but

– Dependency decreases with 
increasing distance between rows

AY= DY= AY=

1 2 3

DY=

1 2 … 1 2 … 1 2 …

1 1

2

…

2 1

2

…

3 1

2

…
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Time series dependencies (2) 
• Consider an AR(1) time series

𝐷𝑡 = 𝜃𝐷𝑡−1 + 𝜀𝑡 , 𝐸 𝜀𝑡 = 0, 𝑉𝑎𝑟 𝜀𝑡 = 𝜎𝜀
2

• May be shown that 

𝐶𝑜𝑣 𝐷𝑠, 𝐷𝑡 ≅ 𝑐𝑜𝑛𝑠𝑡.× 𝜃𝑡−𝑠, 𝑡 > 𝑠
for 𝑠, 𝑡 sufficiently large for the series to have 
“forgotten” its initial value

• This kind of geometric decay (0 ≤ 𝜃 ≤ 1)may be 
more suitable for correlation between rows (or 
columns, or diagonals)
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Time series dependencies (3) 
• Example: dependency between diagonals

• Earlier form of diagonal-wise dependency model:

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊𝑡

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)
, 𝑎𝑙𝑙 𝑊𝑡

(𝑛)
𝑖𝑛𝑑𝑒𝑝.

• Retain this model form but now assume the 𝑊𝑡
(𝑛)

are AR(1): 

𝑊𝑡
(𝑛)

=𝜃𝑊𝑡−1
(𝑛)

+ 𝜀𝑡
• Then 

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
= 𝑐𝑜𝑛𝑠𝑡.× 𝛽𝑖𝑗

(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜃 𝑖+𝑗 − 𝑘+𝓁 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2

Distance 
between 
diagonals
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Time series dependencies (4) 
• The covariance matrix 

now takes the 
schematic form 
illustrated
– Axes now conveniently 

labelled by AY within CY

• Much richer 
covariance structure

CY= AY= CY=

1 2 3 4 5 6 7 …

AY=

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 …

1 1

2 1

2

3 1

2

3

4 1

2

3

4

5 1

2

3

4

5

6 1

2

3

4

5

6

7 1

… …
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Between-triangle dependencies 

(1)
• Suppose one wishes to reflect 

dependency between cells of different 

triangles, i.e. between 𝑋𝑖𝑗
(𝑚)

, 𝑋𝑘𝓁
(𝑛)

• Consider diagonal-wise dependency as 

a (more or less arbitrary) example for 

explanatory purposes
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Between-triangle dependencies 

(2)
• To incorporate diagonal-wise dependency within a triangle:

𝑋𝑖𝑗
(𝑛)

= 𝛽𝑖𝑗
(𝑛)
𝑊𝑡

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑛)
, 𝑋𝑘𝓁

(𝑛)
= 𝛿𝑖+𝑗,𝑘+𝓁𝛽𝑖𝑗

(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜎
𝑊𝑡

(𝑛)
2 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2

• To add diagonal-wise dependency between triangles:

𝑋𝑖𝑗
(𝑛)

= 𝛼𝑖𝑗
(𝑛)
𝑊𝑡 +𝛽𝑖𝑗

(𝑛)
𝑊𝑡

(𝑛)
+ 𝜙𝑖𝑗

(𝑛)
𝑍𝑖𝑗
(𝑛)

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑚)

, 𝑋𝑘𝓁
(𝑛)

= 𝛿𝑖+𝑗,𝑘+𝓁𝛼𝑖𝑗
(𝑚)

𝛼𝑘𝓁
(𝑛)
𝜎𝑊𝑡

2 + 𝛿𝑚𝑛 𝛿𝑖+𝑗,𝑘+𝓁𝛽𝑖𝑗
(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜎
𝑊𝑡

(𝑛)
2 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2

Between triangles, 
diagonal

Within triangle, 
diagonal

Within triangle, 
cell variance
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Between-triangle dependencies 

(3)
• The multi-segment 

covariance matrix takes 
the schematic form 
illustrated
– Axes now labelled by AY 

within CY within segment

• Other between-triangle 
dependencies can be 
added in similar fashion

Array # CY= AY= Array #

1 2 3

CY=

1 2 3 4 … 1 2 3 4 … 1 2 …

AY=

1 1 2 1 2 3 1 2 3 4 1 1 2 1 2 3 1 2 3 4 1 1 …

1 1 1

2 1

2

3 1

2

3

4 1

2

3

4

2 1 1

2 1

2

3 1

2

3

4 1

2

3

4

3 1 1

2 1

… …
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Parameter estimation (1)
• Hitherto, we have been adding common shock terms 

willy-nilly into the representation of 𝑋𝑖𝑗
(𝑛)

, without any 
thought for how the model is to be implemented

• Ideal if these terms could be formally estimated
– Some literature on this

• But, in many practical situations, estimation will be 
heuristic (translation: informed guesswork)
– Particularly the case for forecasting (reserving)

• [Niels Bohr: “Prediction is very difficult, especially if it’s about the 
future”]
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Parameter estimation (2)
• So we now concentrate on reducing the results to 

a form that:
– Is brief and palatable

– Consists of terms that are:
• Relatively few in number

• Intuitive in their interpretation

• But without major loss of accuracy

• This will provide the practitioner with a reasonable 
chance of reasonable accuracy in heuristic 
parameter estimation
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Parameter reduction (1)
• As an example, recall the between-triangle diagonal 

dependency case

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑚)

, 𝑋𝑘𝓁
(𝑛)

= 𝛿𝑖+𝑗,𝑘+𝓁𝛼𝑖𝑗
(𝑚)

𝛼𝑘𝓁
(𝑛)
𝜎𝑊𝑡

2 + 𝛿𝑚𝑛 𝛿𝑖+𝑗,𝑘+𝓁𝛽𝑖𝑗
(𝑛)
𝛽𝑘𝓁
(𝑛)
𝜎
𝑊𝑡

(𝑛)
2 + 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗

(𝑛) 2
𝜎
𝑍𝑖𝑗
(𝑛)
2

• The first simplification arises from noting that the 𝜎 terms can all 
be absorbed into their associated coefficients:

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑚)

, 𝑋𝑘𝓁
(𝑛)

= 𝛿𝑖+𝑗,𝑘+𝓁𝛼𝑖𝑗
(𝑚)

𝛼𝑘𝓁
(𝑛)

+ 𝛿𝑚𝑛 𝛿𝑖+𝑗,𝑘+𝓁𝛽𝑖𝑗
(𝑛)
𝛽𝑘𝓁
(𝑛)

+ 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗
(𝑛) 2
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Parameter reduction (2)

𝐶𝑜𝑣 𝑋𝑖𝑗
(𝑚)

, 𝑋𝑘𝓁
(𝑛)

= 𝛿𝑖+𝑗,𝑘+𝓁𝛼𝑖𝑗
(𝑚)

𝛼𝑘𝓁
(𝑛)

+ 𝛿𝑚𝑛 𝛿𝑖+𝑗,𝑘+𝓁𝛽𝑖𝑗
(𝑛)
𝛽𝑘𝓁
(𝑛)

+ 𝛿𝑖𝑗,𝑘𝓁 𝜙𝑖𝑗
(𝑛) 2

• Special case: 𝑚, 𝑖, 𝑗 = 𝑛, 𝑘, 𝓁

𝑉𝑎𝑟 𝑋𝑖𝑗
(𝑚)

= 𝛼𝑖𝑗
(𝑚) 2

+ 𝛽𝑖𝑗
(𝑚) 2

+ 𝜙𝑖𝑗
(𝑚) 2

• The nature of these three components was noted earlier

• So cell variance decomposes into contributions from:
– Diagonal common shock across all triangles

– Diagonal common shock specific to the triangle

– Idiosyncratic noise specific to cell

• A variance decomposition for each cell determines all coefficients of 
the dependency structure (apart from 𝜃’s if they are included)
– 𝜃’s would be estimated/guesstimated separately
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Parameter reduction (3)
• Further mathematical development is omitted

• Proceeding directly to the conclusion, the entire dependency 
structure is defined by the following parameters
– For each cell in each triangle

• The decomposition of the cell variance into its three components

– For each triangle
• The value of the AR(1) coefficient if time series effects are included

– Across all triangles
• The value of the AR(1) coefficient if a time series common shock across all 

triangles is included

• A total of 𝟑𝑵 + 𝟏 parameter values to be specified
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Numerical example

• Need to consider small dimensions in 

order that results may be displayed

• Choose 𝑁 = 2, 𝐼 = 𝐽 = 4 (4x4 triangles)

– 10 observations per triangle

– 20x20 correlation matrix
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Selection of parameter values
• For each cell in each triangle

– The decomposition of the cell variance into its three components
• Same for all cells in a triangle

• Triangle 1: 0.1, 0.3, 0.6
• Triangle 2: 0.1, 0.1, 0.8

• For each triangle
– The value of the AR(1) coefficient if time series effects are 

included
• Triangles 1 and 2: 0.3, 0.6

• Across all triangles
– The value of the AR(1) coefficient if a time series common shock 

across all triangles is included: 0.2

• Correlation matrix follows very quickly and easily



41

Example correlation matrix
Class # CY= AY= Class #

1 2

CY=

1 2 2 3 3 3 4 4 4 4 1 2 2 3 3 3 4 4 4 4

AY=

1 1 2 1 2 3 1 2 3 4 1 1 2 1 2 3 1 2 3 4

1 1 1 1.00 0.11 0.11 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.10 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1 0.11 1.00 0.40 0.11 0.11 0.11 0.03 0.03 0.03 0.03 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00

2 2 0.11 0.40 1.00 0.11 0.11 0.11 0.03 0.03 0.03 0.03 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00

3 1 0.03 0.11 0.11 1.00 0.40 0.40 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02

3 2 0.03 0.11 0.11 0.40 1.00 0.40 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02

3 3 0.03 0.11 0.11 0.40 0.40 1.00 0.11 0.11 0.11 0.11 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02

4 1 0.01 0.03 0.03 0.11 0.11 0.11 1.00 0.40 0.40 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10

4 2 0.01 0.03 0.03 0.11 0.11 0.11 0.40 1.00 0.40 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10

4 3 0.01 0.03 0.03 0.11 0.11 0.11 0.40 0.40 1.00 0.40 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10

4 4 0.01 0.03 0.03 0.11 0.11 0.11 0.40 0.40 0.40 1.00 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10

2 1 1 0.10 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.08 0.08 0.04 0.04 0.04 0.02 0.02 0.02 0.02

2 1 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.08 1.00 0.20 0.08 0.08 0.08 0.04 0.04 0.04 0.04

2 2 0.02 0.10 0.10 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.08 0.20 1.00 0.08 0.08 0.08 0.04 0.04 0.04 0.04

3 1 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 1.00 0.20 0.20 0.08 0.08 0.08 0.08

3 2 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 0.20 1.00 0.20 0.08 0.08 0.08 0.08

3 3 0.00 0.02 0.02 0.10 0.10 0.10 0.02 0.02 0.02 0.02 0.04 0.08 0.08 0.20 0.20 1.00 0.08 0.08 0.08 0.08

4 1 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 1.00 0.20 0.20 0.20

4 2 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 1.00 0.20 0.20

4 3 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 0.20 1.00 0.20

4 4 0.00 0.00 0.00 0.02 0.02 0.02 0.10 0.10 0.10 0.10 0.02 0.04 0.04 0.08 0.08 0.08 0.20 0.20 0.20 1.00

• Within-
diagonal 
covariances
indicated by 
shading
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Current practice
• Noted earlier that correlations alone are not helpful for 

estimation of the extreme tail

• Common practice is to combine a 𝑡-copula with 
estimated marginal distributions for business segments

• 𝑡-copula defined by correlation matrix and degrees of 
freedom
– Often practical difficulty in selecting these

• The present work may be extended slightly to inform the 
calculation of capital margins
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Tail dependency 
• The choice of 𝑡-copula degrees of freedom may be best 

approached in terms of the coefficient of (upper) tail 
dependency
– This is a quantity specific to the extreme tails

– Definition: 𝜆 = lim
𝑞→1−

𝑃𝑟𝑜𝑏 𝑋2 > 𝐹2
←(𝑞)|𝑋1 > 𝐹1

←(𝑞) where

• 𝐹𝑖 is the d.f. of 𝑋𝑖
• 𝐹𝑖

← is the generalized inverse of 𝐹𝑖, i.e. 𝐹𝑖
← 𝑦 = 𝑖𝑛𝑓 𝑥: 𝐹𝑖(𝑥) ≥ 𝑦

• A capital actuary would normally be able to take a view 
on the limiting conditional probability involved in the 
definition of the tail dependency
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Selection of 𝑡-copula
• If the copula is made subject to the correlation matrix calculated 

earlier, then it will be consistent with any risk margins calculated

• Its tail behavior will be determined by its degrees of freedom

• So
– Estimate the coefficient of tail dependency for all pairs of segments

– Tabulate the coefficients of tail dependency given for these pairs according to 
a 𝑡-copula for varying degrees of freedom

– Select the number of degrees of freedom that gives a rough match (if a 
match exists)

– The resulting copula will be consistent with both risk margins and the actuary’s 
views of tail behavior

• Note that the non-existence of a match indicates that a 𝑡-copula is 
inconsistent with these other criteria
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Conclusion 

• Dependency models constructed across triangles for multiple 
business segments

• Flexible models that allow for
– Within- and between-triangle dependencies

– Row-, column- and diagonal-wise dependencies (and, indeed, 
just about anything else)

– Time series dependencies between different rows, etc.

• Expression of the models in a parametrization that is
– Frugal in the number of parameters

– Intuitive in interpretation

• Models applicable directly to risk margins
– But also applicable to capital margins under a simple extension
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Questions?




