

Construction of detailed correlation structures across GI business segments

Benjamin Avanzi, Greg Taylor \& Bernard Wong

School of Risk and Actuarial Studies UNSW Australia

Insights, 5 October 2016

The authors and their Linkage Project

- Authors from School of Risk and Actuarial Studies, UNSW
- This work an output in relation to a research grant from the Actuaries Institute
- Also supported by a Linkage Grant awarded by the Australian Research Council
- Subject: "Modelling claim dependencies for the general insurance industry with economic capital in view...'
- Term: 3 years+
- Collaborative between, and jointly funded by Government, industry (Allianz, IAG, Suncorp) and academia

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

The "why should we care?" test (1)

- Who cares about large correlation matrices?
- Risk margins (moderate percentiles of total liabilities)
- Capital margins (high percentiles of total liabilities)
- Both require consideration of dependencies between business segments
- For some purposes, the dependencies may be expressed as correlations

The "why should we care?" test (2)

- A large insurer may wish to recognize 50 or more segments
- Simple case
- Only 50 segments
- No fine structure within segments
- 50x50 correlation matrix has 1,225 free entries requiring estimation

The "why should we care?" test (3)

- It gets worse
- A claim triangle may be associated with each business segment
- A dependency between two segments may differ according to the cells of the triangles considered
- e.g. suppose correlation exists specifically between diagonals

The "why should we care?" test (4)

- Simple case
- Only 50 segments
- Triangles only 10x10
- 45 cells each in lower triangle (projected future)
- There are now 2,250 cells
- 2250x2250 correlation matrix has roughly 2.5M free entries requiring estimation

The "why should we care?" test (5)

- So how should one proceed with the generation of these large matrices and be certain of satisfying the following requirements:
- Matrix is known to be positive definite
- The magnitude of each entry is reasonable
- The relative magnitudes of any pair of entries are reasonable
- Note that, in our simple example, there are roughly 3 trillion pairs

Scope

- We shall mainly discuss correlations
- These give meaningful representations of dependency only for distributions that do not deviate too far from normal
- They are therefore suitable for measurement of insurance claim dependencies not too distant from the mean (moderate percentiles)
- Most of the presentation therefore relates to risk margins rather than capital margins
- But a brief word about capital margins at the end

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

A simple (trivial?) model

- Suppose X, Y, Z independent random variables
- Define new variables

$$
\begin{aligned}
& A=\alpha_{A} Z+\beta_{A} X \\
& B=\alpha_{B} Z+\beta_{B} Y
\end{aligned}
$$

where α 's, β 's are constants >0

- Evidently, A, B are dependent provided Z is not degenerate
- In fact

$$
\operatorname{Cov}(A, B)=\alpha_{A} \alpha_{B} \sigma_{Z}^{2} \geq 0
$$

- This is a common shock model
- It forms the basis of almost the entire presentation

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Framework and notation (1)

- Consider N business segments
- Each associated with an (upper) claim triangle with entries X labelled by accident and development period
- So $X_{i j}^{(n)}$ denotes the entry (e.g. Claim payments) in segment n for accident period i and development period j
- All triangles congruent (same size and shape)
- We could relax these conditions if we wished
- Don't require triangles, only 2-D arrays of any shape, possibly with holes
- Don't require congruence

Framework and notation (2)

- So framework has this appearance

Construction of dependent models

- Dependency might occur:
- Within a single triangle; or
- Between a number of different triangles;
- Or both

Within-triangle dependency (1)

- Suppose one wishes to create dependency between cells (i, j) and (k, ℓ) of triangle n
- Just define the common shock model (for all $i, j)$

$$
X_{i j}^{(n)}=\underbrace{\beta_{i j}^{(n)} W^{(n)}}+\underbrace{\phi_{i j}^{(n)} Z_{i j}^{(n)}}
$$

$$
W^{(n)} \text { and all } Z_{i j}^{(n)}
$$ independent

Within-triangle dependency (2)

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}\left(\boldsymbol{\beta}_{i j}^{(\boldsymbol{n})}>\mathbf{0}\right)
$$

- It follows that

$$
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k \ell}^{(n)}\right]=\beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \sigma_{W^{(n)}}^{2}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{z_{i j}^{(n)}}^{2}>0
$$

- Note that this creates dependency between all cells of triangle n
- Note also that the matrix of covariances is strictly positive definite by construction
- Same comment for all dependencies considered henceforth

Within-triangle dependency (3)

- The covariance matrix takes the schematic form illustrated
- Axes labelled by DY within AY
- Darker shading indicates greater covariance

Row-wise dependency (1)

$$
\begin{gathered}
X_{i j}^{(n)}=\beta_{i j}^{(n)} W(n)+\phi_{i j}^{(n)} Z_{i j}^{(n)} \\
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k l}^{(n)}\right]=\beta_{i j}^{(n)} \beta_{k l}^{(n)} \sigma_{W}^{2}(n)+\delta_{i j, k l}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{Z_{i j}^{(n)}}^{2}
\end{gathered}
$$

- Suppose one wishes to introduce only a row-wise dependency, i.e.

$$
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k \ell}^{(n)}\right]>0 \text { iff } i=k
$$

- Then simply replace the model by:

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{i}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}
$$

$$
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k \ell}^{(n)}\right]=\delta_{i k} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \sigma_{W_{i}^{(n)}}^{2}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{z_{i j}^{(n)}}^{2}
$$

Row-wise dependency (2)

- Covariance matrix

Column- and diagonal-wise dependency

- Row-wise

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{i}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}
$$

- Column-wise

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{j}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}
$$

- Diagonal-wise

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{t}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)} \text { where } \boldsymbol{t}=\boldsymbol{i}+\boldsymbol{j}-\mathbf{1}
$$

More general within-array dependencies

- All of the previous forms of dependency can be present simultaneously $X_{i j}^{(n)}$
$=\beta_{(\text {arr }) i j}^{(n)} W_{\text {(arr) }}^{(n)}+\beta_{(\text {row }) i j}^{(n)} W_{\text {(row) } i}^{(n)}$
$+\beta_{(c o l) i j}^{(n)} W_{(c o l) j}^{(n)}+\beta_{(\text {diag }) i j}^{(n)} W_{(\text {diag }) t}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}$

Time series dependencies (1)

- Re-consider the row dependency introduced (see right)
- Dependency occurs only within rows
- Observations from different rows are independent
- One may desire a more graded approach
- All rows are dependent, but
- Dependency decreases with increasing distance between rows

Time series dependencies (2)

- Consider an AR(1) time series

$$
D_{t}=\theta D_{t-1}+\varepsilon_{t}, E\left[\varepsilon_{t}\right]=0, \operatorname{Var}\left[\varepsilon_{t}\right]=\sigma_{\varepsilon}^{2}
$$

- May be shown that

$$
\operatorname{Cov}\left[D_{s}, D_{t}\right] \cong \operatorname{const} . \times \theta^{t-s}, t>s
$$

for s, t sufficiently large for the series to have "forgotten" its initial value

- This kind of geometric decay ($0 \leq \theta \leq 1$)may be more suitable for correlation between rows (or columns, or diagonals)

Time series dependencies (3)

- Example: dependency between diagonals
- Earlier form of diagonal-wise dependency model:

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{t}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)} \text {, all } W_{t}^{(n)} \text { indep. }
$$

- Retain this model form but now assume the $W_{t}^{(n)}$ are $\operatorname{AR}(1)$: $W_{t}^{(n)}=\theta W_{t-1}^{(n)}+\varepsilon_{t}$
- Then

$$
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k \ell}^{(n)}\right]=\mathrm{const} . \times \beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \theta^{|(i+j)-(k+\ell)|}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{z_{i j}^{(n)}}^{2}
$$

Distance between diagonals

Time series dependencies (4)

- The covariance matrix now takes the schematic form illustrated
- Axes now conveniently labelled by AY within CY
- Much richer covariance structure

Between-triangle dependencies (1)

- Suppose one wishes to reflect dependency between cells of different triangles, i.e. between $X_{i j}^{(m)}, X_{k \ell}^{(n)}$
- Consider diagonal-wise dependency as a (more or less arbitrary) example for explanatory purposes

Between-triangle dependencies (2)

- To incorporate diagonal-wise dependency within a triangle:

$$
X_{i j}^{(n)}=\beta_{i j}^{(n)} W_{t}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}
$$

$$
\operatorname{Cov}\left[X_{i j}^{(n)}, X_{k \ell}^{(n)}\right]=\delta_{i+j, k+\ell} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \sigma_{W_{t}^{(n)}}^{2}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{z_{i j}^{(n)}}^{2}
$$

- To add diagonal-wise dependency between triangles:

$$
X_{i j}^{(n)}=\alpha_{i j}^{(n)} W_{t}+\beta_{i j}^{(n)} W_{t}^{(n)}+\phi_{i j}^{(n)} Z_{i j}^{(n)}
$$

$\operatorname{Cov}\left[X_{i j}^{(m)}, X_{k \ell}^{(n)}\right]$
$=\delta_{i+j, k+\ell} \alpha_{i j}^{(m)} \alpha_{k \ell}^{(n)} \sigma_{W_{t}}^{2}+\delta_{m n}\left[\delta_{i+j, k+\ell} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \sigma_{W_{t}^{(n)}}^{2}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{Z_{i j}^{(n)}}^{2}\right]$
$\begin{gathered}\text { Between triangles, } \\ \text { diagonal }\end{gathered}$
$\begin{gathered}\text { Within triangle, } \\ \text { diagonal }\end{gathered}$
$\begin{gathered}\text { Within triangle, } \\ \text { cell variance }\end{gathered}$

Between-triangle dependencies

- The multi-segment covariance matrix takes the schematic form illustrated
- Axes now labelled by AY within CY within segment
- Other between-triangle dependencies can be added in similar fashion

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Parameter estimation (1)

- Hitherto, we have been adding common shock terms willy-nilly into the representation of $X_{i j}^{(n)}$, without any thought for how the model is to be implemented
- Ideal if these terms could be formally estimated
- Some literature on this
- But, in many practical situations, estimation will be heuristic (translation: informed guesswork)
- Particularly the case for forecasting (reserving)
- [Niels Bohr: "Prediction is very difficult, especially if it's about the future"]

Parameter estimation (2)

- So we now concentrate on reducing the results to a form that:
- Is brief and palatable
- Consists of terms that are:
- Relatively few in number
- Intuitive in their interpretation
- But without major loss of accuracy
- This will provide the practitioner with a reasonable chance of reasonable accuracy in heuristic parameter estimation

Parameter reduction (1)

- As an example, recall the between-triangle diagonal dependency case
$\operatorname{Cov}\left[X_{i j}^{(m)}, X_{k \ell}^{(n)}\right]$
$=\delta_{i+j, k+\ell} \alpha_{i j}^{(m)} \alpha_{k \ell}^{(n)} \sigma_{W_{t}}^{2}+\delta_{m n}\left[\delta_{i+j, k+\ell} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)} \sigma_{W_{t}^{(n)}}^{2}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2} \sigma_{z_{i j}^{(n)}}^{2}\right]$
- The first simplification arises from noting that the σ terms can all be absorbed into their associated coefficients:

$$
\begin{aligned}
& \operatorname{Cov}\left[X_{i j}^{(m)}, X_{k \ell}^{(n)}\right] \\
& =\delta_{i+j, k+\ell} \alpha_{i j}^{(m)} \alpha_{k \ell}^{(n)}+\delta_{m n}\left[\delta_{i+j, k+\ell} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2}\right]
\end{aligned}
$$

Parameter reduction (2)

$$
\operatorname{Cov}\left[X_{i j}^{(m)}, X_{k \ell}^{(n)}\right]=\delta_{i+j, k+\ell} \alpha_{i j}^{(m)} \alpha_{k \ell}^{(n)}+\delta_{m n}\left[\delta_{i+j, k+\ell} \beta_{i j}^{(n)} \beta_{k \ell}^{(n)}+\delta_{i j, k \ell}\left(\phi_{i j}^{(n)}\right)^{2}\right]
$$

- Special case: $(m, i, j)=(n, k, \ell)$

$$
\operatorname{Var}\left[X_{i j}^{(m)}\right]=\left(\alpha_{i j}^{(m)}\right)^{2}+\left(\beta_{i j}^{(m)}\right)^{2}+\left(\phi_{i j}^{(m)}\right)^{2}
$$

- The nature of these three components was noted earlier
- So cell variance decomposes into contributions from:
- Diagonal common shock across all triangles
- Diagonal common shock specific to the triangle
- Idiosyncratic noise specific to cell
- A variance decomposition for each cell determines all coefficients of the dependency structure (apart from θ 's if they are included)
- θ 's would be estimated/guesstimated separately

Parameter reduction (3)

- Further mathematical development is omitted
- Proceeding directly to the conclusion, the entire dependency structure is defined by the following parameters
- For each cell in each triangle
- The decomposition of the cell variance into its three components
- For each triangle
- The value of the $\operatorname{AR}(1)$ coefficient if time series effects are included
- Across all triangles
- The value of the $\operatorname{AR}(1)$ coefficient if a time series common shock across all triangles is included
- A total of $3 N+\mathbf{1}$ parameter values to be specified

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Numerical example

- Need to consider small dimensions in order that results may be displayed
- Choose $N=2, I=J=4$ (4×4 triangles)
- 10 observations per triangle
- 20x20 correlation matrix

Selection of parameter values

- For each cell in each triangle
- The decomposition of the cell variance into its three components
- Same for all cells in a triangle
- Triangle 1: 0.1, 0.3, 0.6
- Triangle 2: 0.1, 0.1, 0.8
- For each triangle
- The value of the AR(1) coefficient if time series effects are included
- Triangles 1 and 2: 0.3, 0.6
- Across all triangles
- The value of the AR(1) coefficient if a time series common shock across all triangles is included: 0.2
- Correlation matrix follows very quickly and easily

Example correlation matrix

- Withindiagonal covariances indicated by shading

41

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Current practice

- Noted earlier that correlations alone are not helpful for estimation of the extreme tail
- Common practice is to combine a t-copula with estimated marginal distributions for business segments
- t-copula defined by correlation matrix and degrees of freedom
- Often practical difficulty in selecting these
- The present work may be extended slightly to inform the calculation of capital margins

Tail dependency

- The choice of t-copula degrees of freedom may be best approached in terms of the coefficient of (upper) tail dependency
- This is a quantity specific to the extreme tails
- Definition: $\lambda=\lim _{q \rightarrow 1^{-}} \operatorname{Prob}\left[X_{2}>F_{2}^{\leftarrow}(q) \mid X_{1}>F_{1}^{\leftarrow}(q)\right]$ where
- F_{i} is the d.f. of X_{i}
- F_{i}^{\leftarrow} is the generalized inverse of F_{i}, i.e. $F_{i}^{\leftarrow}(y)=\inf \left\{x: F_{i}(x) \geq y\right\}$
- A capital actuary would normally be able to take a view on the limiting conditional probability involved in the definition of the tail dependency

Selection of t-copula

- If the copula is made subject to the correlation matrix calculated earlier, then it will be consistent with any risk margins calculated
- Its tail behavior will be determined by its degrees of freedom
- So
- Estimate the coefficient of tail dependency for all pairs of segments
- Tabulate the coefficients of tail dependency given for these pairs according to a t-copula for varying degrees of freedom
- Select the number of degrees of freedom that gives a rough match (if a match exists)
- The resulting copula will be consistent with both risk margins and the actuary's views of tail behavior
- Note that the non-existence of a match indicates that a t-copula is inconsistent with these other criteria

Overview

- Motivation
- Common shock models
- Application to multiple claim triangles
- Reduction to simple concepts for populating large correlation matrices
- Numerical example for risk margins
- Capital margins
- Conclusion

Conclusion

- Dependency models constructed across triangles for multiple business segments
- Flexible models that allow for
- Within- and between-triangle dependencies
- Row-, column- and diagonal-wise dependencies (and, indeed, just about anything else)
- Time series dependencies between different rows, etc.
- Expression of the models in a parametrization that is
- Frugal in the number of parameters
- Intuitive in interpretation
- Models applicable directly to risk margins
- But also applicable to capital margins under a simple extension

Questions?

