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INTRODUCTION
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The authors and their Linkage Project

• Authors from School of Risk and Actuarial Studies, UNSW

• They hold a Linkage Grant awarded by the Australian Research 
Council
– Subject: “Modelling claim dependencies for the general insurance 

industry with economic capital in view…”

– Term: 3 years+

– Collaborative between, and jointly funded by Government, industry 
(Allianz, IAG, Suncorp) and academia

• This presentation relates to one of the many projects funded by 
the Grant

• Based on a paper available at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2597405

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2597405


PROLOGUE
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Dependency between lines of business 

(LoBs) 

• Relevant to diversification, as it affects:
– Risk margins

– Capital margins

• Risk margins
– V@R 75%: centre of distribution: (Pearson) correlation a 

reasonable measure of dependency

– V@R 99.5%: right tail of distribution: correlation unlikely to be 
helpful, some measure of tail dependency more useful

– This presentation concerned with correlation and risk 
margins
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Cross-LoB correlations: “conventional 

wisdom”

• Published papers on numerical values of cross-LoB

correlations are:

– Bateup & Reed (2001)

– Collings & White (2001)

• Some insurers may rely on other proprietary work, 

but the above papers form, in some sense, an 

industry benchmark
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Cross-LoB correlations: “conventional 

wisdom” – example 1

• Bateup & Reed: total correlation for OSC

MotorCTP
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Cross-LoB correlations: “conventional 

wisdom” – example 2

• Bateup & Reed: correlation for OSC systemic 

variance only (excludes process error)
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Cross-LoB correlations: “conventional 

wisdom” (continued)

• The example contains some large correlations

– Many of 0.4 or more

– Up to a maximum of 0.75

• We do not assert that these correlations are wrong

• Rather that they should be model dependent

– And we consider how changing the model might change 

the correlations that should be incorporated in these 
triangles
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Layout of presentation

• What should be measured?

• What can be gleaned from theory?

• A simulation example of what can go wrong

• Some examples based on real data

• Modelling the past vs forecasting the future

• Some conclusions



WHAT SHOULD BE MEASURED?
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Notation 

• Claim array Δ for LoB 𝑛
– Same shape Δ for all 𝑛

• Observation in 𝑘, 𝑗 cell of Δ is 𝑌𝑘𝑗
(𝑛)
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Pearson correlation (between claim arrays of 

two LoBs)
• Well known definition

𝑟 𝑛1,𝑛2 =
𝑇−1  𝑘,𝑗∈Δ 𝑌𝑘𝑗

(𝑛1) −  𝑌(𝑛1) 𝑌𝑘𝑗
(𝑛2) −  𝑌(𝑛2)

𝑆(𝑛1)𝑆(𝑛2)

where 
𝑇 = number of observations in Δ

 𝑌(𝑛) = mean of the observations 𝑌𝑘𝑗
(𝑛)

𝑆(𝑛) = sample standard deviation of the observations 𝑌𝑘𝑗
(𝑛)

• THIS DEFINITION WILL NOT WORK WELL IN OUR CASE 
WITHOUT MODIFICATION!!!



Pearson correlation blooper
• Example from

http://www.tylervig
en.com

• Correlation 
between Per 
capita 
consumption of 
cheese and Deaths 
by becoming 
tangled in their 
bedsheets = 0.95

• Yet common 
sense suggests 
correlation = 0

http://www.tylervigen.com/
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Pearson correlation blooper (cont’d)

• This calculation would be awarded an F grade in Time Series 
101
– Rule: de-trend all time series before calculating correlations

• Why?
– Otherwise the example tells us only that the trends of the two time 

series are of similar form (roughly linear)
– This could have been deduced without any concept of correlation
– Similar (high) correlations can be obtained from claims (and other 

financial) data simply because of inflation

• So, correlation calculated after de-trending of the time series 
provides a much more powerful tool
– Because it measures the sympathy in departures of the two time 

series from their trends
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Back to claim data correlations: how should 

they be calculated
• In the blooper example

– Estimating a trend (in this case, perhaps just with respect to time) is 
equivalent to creating a model

– Correlations calculated after de-trending are correlations between 
departures from the models
• i.e. between residuals

• This is the case for all data sets
– First, model the data (de-trend) to capture all deterministic effects

– Calculate some form of residuals (stochastic effects)

– Correlate the residuals

• Correlation is then a function of stochastic quantities, as it 
should be



WHAT CAN BE GLEANED FROM 

THEORY?
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Measured correlations are model dependent

• It has been shown that measured correlations are 

based on residuals

• Residuals are departures from model fitted values

• Residuals are therefore model-dependent

• Correlations are therefore model-dependent
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How are measured correlations affected by 

quality of modelling?

• Let future observations be denoted 𝑌𝑘𝑗
∗(𝑛)

(past 𝑌𝑘𝑗
(𝑛)

)

• Write all the 𝑌𝑘𝑗
∗(𝑛)

as a vector 𝑌∗(𝑛)

• Prediction error is

True mean

Model forecast in 
absence of 
sampling error

Model forecast
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How are measured correlations affected by 

quality of modelling? (cont’d)

• Omission of predictive variables from the model 
(enlarging model error) shifts some of the signal in 
the data from measured explanatory effects to 
perceived random effects (noise)

• If the omitted explanatory variables are common 
to different LoBs, this is likely to create correlation 
between the “noise” of those LoBs

• Poor modelling may create apparent correlation 
where none actually exists
– And none would be estimated with higher quality 

modelling

Small for good models
Large for poor models

The paper contains an 
algebraic proof of this 
result



A SIMULATION EXAMPLE OF WHAT 

CAN GO WRONG
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Simulated data

• Data simulated for 2 LoBs: Home & Motor

• Drawn from following model:

• Chain ladder structure with superimposed inflation 

added

Row effect Column effect Diagonal effect

All observations 
stochastically 
independent
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Simulated data (cont’d)

• Quarterly paid loss triangles generated with dimension 41 
(same dimension as in later real data sets)

• Mean diagonal effects (superimposed inflation) subject to 3 
scenarios:
– Scenario 1: annual rate of 10% in diagonals 17 to 28; other diagonals 

3% 
– Scenario 2: annual rate of 3% in diagonals 1 to 20; thereafter 10% 
– Scenario 3: annual rate of 1% in diagonals 1 to 4; 2% in diagonals 5 to 

8; increasing by 1% each 4th diagonal; finally 11% in 41st diagonal 
– Each scenario is common to the Home and Motor LoBs

• 1,000 replicates of each scenario for each LoB
– So 6,000 triangles in all
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Analysis of simulated data

• Reminder of data structure

• Each triangle analysed according to the following model

𝑌𝑘𝑗
(𝑛)

~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜇𝑘𝑗
(𝑛)

, 𝜙(𝑛)

𝜇𝑘𝑗
(𝑛)

= exp 𝑟𝑘
(𝑛)

+ 𝑠𝑗
(𝑛)

• It is known that this formulation will produce precisely the same 
results as the conventional chain ladder
– Model error introduced: diagonal effects omitted
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Analysis of simulated data (cont’d)

• Each of the 6,000 triangles analysed by the above chain 
ladder model

• Standardized deviance residuals computed for the ½ ×
41 × 42 cells in each triangle

• For each of the 3,000 Home-Motor pairs, Pearson 
correlation of residuals computed:
– Over all cells;

– Separately for each accident quarter (AQ);

– Separately for each development quarter (DQ);

– Separately for each calendar quarter (CQ);
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Simulation results (1)

• Home-Motor Pearson correlation across all cells of 

triangles

– True value = zero

– Simulated values as follows

Scenario Pearson correlation

1 +0.20

2 +0.27

3 +0.17
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Simulation results (2)

• Simulated  

Home-

Motor 

correlations 

by CQ

Superimposed inflation
Scenario 1: High in middle CQs
Scenario 2: High in later CQs
Scenario 3: Steadily increasing 
over CQs
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Simulation results (3)

• Simulated  

Home-

Motor 

correlations 

by DQ

Superimposed inflation
Scenario 1: High in middle CQs
Scenario 2: High in later CQs
Scenario 3: Steadily increasing 
over CQs



30

Simulation results (4)

• Simulated  

Home-

Motor 

correlations 

by AQ

Superimposed inflation
Scenario 1: High in middle CQs
Scenario 2: High in later CQs
Scenario 3: Steadily increasing 
over CQs



SOME EXAMPLES BASED ON REAL 

DATA
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Data set

• AUSI (Allianz, UNSW, Suncorp, IAG)data set
– Contributed by UNSW’s Linkage Project Partners

– Unit record files for a number of LoBs per Partner
• Exposure files
• Claim files

– Number of years varies by Partner and LoB
• Up to 10 years for Home and Motor

– At present 4 LoBs:
• Home
• Motor
• CTP
• Public Liability
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Data analysis

• Each Partner/LoB data summarized in a paid loss 

triangle

• Each triangle modelled with increasing attention to 

detail

• For each model

– Standardized deviance residuals computed

– Pearson correlations of residuals computed for various LoB

pairs within Partner
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Results of real data analysis (conventional 

chain ladder)
Cross-LoB Pearson correlation (whole triangles)

Insurer A Insurer B

Home Motor CTP PL CTP PL

Insurer A

Home 1 +0.59 +0.04 +0.06

Motor 1 +0.04 -0.02

CTP 1 -0.02

PL 1

Insurer B CTP 1 -0.09

PL 1
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Effect of major events?
• Major events 

cause 
sympathetic 
changes in 
both LoBs
affecting:
• Volume 

of claim 
payments

• Rate of 
settle-
ment
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Results of real data analysis (AQs of major 

events simply deleted from chain ladder)
Cross-LoB Pearson correlation (whole triangles)

Insurer A Insurer B

Home Motor CTP PL CTP PL

Insurer A

Home 1 +0.11 +0.04 +0.09

Motor 1 +0.02 -0.02

CTP 1 -0.02

PL 1

Insurer B CTP 1 -0.09

PL 1
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Seasonal effects?
• Note seasonal 

changes in 
claim volumes
• Greater in 

summer 
(both 
LoBs)

• Note greater 
volumes imply 
slower 
settlement 
(both LoBs)
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Results of real data analysis (seasonal 

variates added to chain ladder for DQs 1-3)
Cross-LoB Pearson correlation (whole triangles)

Insurer A Insurer B

Home Motor CTP PL CTP PL

Insurer A

Home 1 -0.01 +0.04 +0.09

Motor 1 +0.01 -0.02

CTP 1 -0.02

PL 1

Insurer B CTP 1 -0.09

PL 1
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Some observations

• For all pairs of LoBs other than Home-Motor, no 
statistically significant non-zero correlations are found
– Even without any attempt to model the esoterica of those 

LoBs’ experience

• Home-Motor requires more care
– At a superficial level, it exhibits high correlation (0.6)

– The majority of this is accounted for by a handful of natural 
events
• The correlation of experience other than these is low (0.1)

– This low correlation is accounted for by seasonal factors
• If the model allows for these, then correlation vanishes
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US evidence

• Chain ladder modelling has also been applied to 
four LoBs in the Meyers-Shi data set that covers 
many insurers

• Cross-LoB Pearson correlations again computed for 
4 LoBs:
– PPA: Private Passenger Auto

– CA: Commercial Auto

– WC: Workers Compensation

– OL: Other Liability
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US results

Pearson correlation (whole triangles)

PPA CA WC OL

PPA 1 +0.07 +0.01 +0.06

CA 1 +0.08 +0.00

WC 1 +0.02

OL 1

• Once again, little of 
interest here
• Even with 

crude chain 
ladder 
modelling



MODELLING THE PAST VS 

FORECASTING THE FUTURE
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Different types of predictors

• Obervation equation:

𝑦 = 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 + 𝜀
= 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠: 𝑠𝑡𝑎𝑡𝑖𝑐, 𝑡𝑖𝑚𝑒, 𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 + 𝜀

Noise

e.g. AQ e.g. DQ e.g. super-
imposed inflation

All of these can be 
modelled in past data 
(their effects removed)

Certain UncertainRe-inserted into 
predictions of future cells

Effect on prediction error NIL INCREASE: possible cross-LoB correlation
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Inferences
• Although it may be possible to model away all cross-LoB

correlation in past data
– It may not be correct to assume zero correlation for the future

– The extent to which it is incorrect depends on the extent to 
which unpredictable predictors are included in the model, 
e.g.

• Superimposed inflation

• Major events

• Claim management changes

• etc.

– Again, correlation is model dependent

• And models of past and future may differ



SOME CONCLUSIONS
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Conclusions 

1. Cross-LoB dependency is not an absolute

2. It is heavily dependent on the claims models used

3. With some attention to detail, it may be possible to 

model away virtually all cross-LoB correlation in 

past data

4. As a very broad generalization:
Better (poorer) modelling → less (greater) perceived dependency
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Conclusions (cont’d)

5. A possible (even frequent) consequence of poor modelling is the 
creation of perceived correlation where none in fact exists
– This correlation might very well be positive, which would:

• Reduce measured diversification credit

• Increase risk margins

• Increase the insurance risk capital margin

6. Although it may be possible to model away all cross-LoB correlation in 
past data, it may not be correct to assume zero correlation for the 
future
– Consideration will need to be given to allowance for cross-LoB dependency in 

relation to unpredictable explanatory variables

7. The procedure of modelling away dependency, and then re-inserting 
part of it
– Is a more accurate reflection of the real world than failing to model it
– Will not in general produce the same result as failing to model it



QUESTIONS?




