17th General Insurance Seminar Risk and Reward

Institute of Actuaries of Australia

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

Towards a better inflation forecast

Hugh Miller © Taylor Fry Pty Ltd

Talk outline

- 1. Introduction
- 2. Potential market forecasts
 - Access Economics forecasts
- 3. Constant estimates
- 4. A more flexible model
 - Empirical evidence
 - Other considerations
- 5. Conclusions/discussion

Inflation forecasts

- Very important part of actuarial work
- Three key statistics
 - CPI
 - -AWE
 - LPI

Desirable characteristics of a forecast

- Updated regularly and consistently
- Able to produce by state and calendar quarters
- Accurate
- Stable
 - Absolute stability
 - Stability relative to the forecast bond yield
- Easily understood
- Objective
- Easy to implement

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

2. Market forecasts

Risk and Reward

Potential market forecasts

Published Forecast	Statistics	State?	Forecast Horizon	Forecast freq.	Regularly of Production
Access Economics	CPI, LPI, AWE	Yes	10 years	Quarterly	Quarterly
State Budget Papers	CPI, LPI	Yes	Varies	Annual	Annual
Consensus Economics	CPI, LPI	No	10 years	Annual	1/2 Yearly
RBA	CPI	No	2 ½ years	1/2 Yearly	1/2 Yearly
Major Aust. Banks	CPI, LPI	No	2 years	Varies	Varies
Treasury (IGR)	CPI, AWE	No	40 years (constant)	Yearly	Varies

Access Economics Forecasts

- Look to be the most suitable
- Accuracy is an unsolved question
- We've examined forecasts over past 10 years, and compared with the constant estimates extracted from the 2002 IGR
- We have tabulated accuracy for different forecast dates (annually, June 99 – June 07) and future durations (0-2, 2-4 and 4-6 years).

Forecast error for AUS CPI

Forecast Date	0-2 years		2-4 years		4-6 years	
	Access	Constant	Access	Constant	Access	Constant
June 1999	-2.8%	-4.3%	-1.9%	-0.5%	-0.5%	0.0%
June 2000	-1.9%	-4.0%	-0.3%	-0.2%	-1.9%	-1.5%
June 2001	-0.9%	-0.5%	-0.9%	0.0%	-1.9%	-1.1%
June 2002	0.9%	-0.2%	-1.1%	-1.5%	-4.1%	-1.6%
June 2003	0.6%	0.0%	-1.5%	-1.1%	-3.0%	-1.0%
June 2004	-1.3%	-1.5%	-1.2%	-1.6%		
June 2005	-0.5%	-1.1%	-1.4%	-1.0%		
June 2006	-2.6%	-1.6%				
June 2007	-1.7%	-1.0%				

Forecast error for AUS AWE

Forecast Date	0-2 years		2-4 years		4-6 years	
	Access	Constant	Access	Constant	Access	Constant
June 1999	0.0%	0.4%	-0.8%	-0.7%	-0.6%	-0.1%
June 2000	-0.4%	0.7%	-1.2%	0.2%	-3.2%	-1.9%
June 2001	-2.6%	-0.7%	-2.3%	-0.1%	-2.0%	-0.8%
June 2002	0.1%	0.2%	-3.3%	-1.9%	-2.6%	0.8%
June 2003	-1.8%	-0.1%	-4.1%	-0.8%	-1.9%	1.7%
June 2004	-1.0%	-1.9%	-0.2%	0.8%		
June 2005	-0.5%	-0.8%	1.2%	1.7%		
June 2006	2.3%	0.8%				
June 2007	2.3%	1.7%				

Other comments on Access forecasts

- Stability between forecast estimates is sometimes inconsistent
- State differences often take the for of "fixed" differentials
- Results suggest projections have limited use for long term forecasting, but are potentially useful for shorter time frames

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

3. Constant estimates

Risk and Reward

What are suitable constant estimates?

Treasury IGR report uses centre of RBA target band for CPI, and adds a historical productivity improvement factor to derive AWE

Measure	IGR 2002	IGR 2007	IGR 2010
CPI	2.5%	2.5%	2.5%
AWE	4.25%	4.25%	4.1%
LPI	N/A	N/A	N/A

Running annual CPI change, 2000-09

Running annual AWE changes, 2000-09

Constant estimates

 State differentials can be adopted by looking at past histories

- **Problem 1**: lack of responsiveness to economic changes
- **Problem 2**: Creates rolling volatility relative to adopted bond yield

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

4. A more flexible model

Risk and Reward

Modifying the constant

Suppose that the long term forecast at a given point in time is still constant, but depends on how the current long term bond yield (Y) compares to the average long term yield (Y_0) :

$$r = r_0 + \theta(Y - Y_0)$$

Here *r* is the adopted rate, r_0 is the IGR benchmark rate and $0 \le \theta \le 1$.

$$r = r_0 + \theta(Y - Y_0)$$

- If $\theta = 0$ we recover our original constant model ("absolute fixed")
- If θ = 1 we obtain a model where the gap between the inflation and bond rate is constant ("fixed differential)
- If $0 < \theta < 1$ we have properties between the two extremes.
- Notice the equation can be characterised as a linear regression problem.
- What is a good choice of θ ?

We briefly look at 3 possible ways of determining θ :

- Index linked government bonds
- Historic patterns
- Access economic forecasts

Index linked government bonds

- The is a small, relatively inefficient market in bonds whose cashflows grow with CPI
- The difference between this rate and the standard bond rate gives a "raw" CPI forecast.
- We extracted quarterly data and regressed the inflation forecast against bond yield.
- $\hat{\theta} = 0.4$

Historic patterns

It is possible to compare the accuracy of different choices of θ

Access Forecasts

- We can regress Access forecasts for inflation for another opinion of the relationship between inflation and bond rate.
- CPI: $\hat{\theta} = 0.33$
- AWE: $\hat{\theta} = 0.33$

Choosing θ , summary

- Estimates based on recent (10 years) history
- Any choice has some sujectivity
- Incremental accuracy improvement is modest
- Setting $\theta = 1$ does not appear justified
- Our choice: $\theta = 0.5$

Other considerations

- Moving between short and long term forecasts
- Auto-regression effects
- State differentials
 - Modifiers the match recent history well:
 - -0.25% for NSW, VIC, TAS
 - +0.5% for QLD, WA

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

5. Conclusions/discussion

Risk and Reward

A return to our desirable properties...

	Market Forecast	Constant Forecasts	Floating Forecasts
			$(\theta = 0.5)$
Easy to update consistently	A	Α	Α
Estimates by state and calendar qtr	A	Α	Α
Accuracy	D	В	B+
Absolute stability	D	Α	В
Differential stability	C	D	В
Easily understood	?	Α	C
Objectivity	Α	В	D
Easy to implement	В	В	C

Some reliances & limiations

- Assumes RBA success in controlling inflation will continue
- Assumes reasonable continuity in economic climate seen over past decade

7 – 10 November 2010 • Sheraton Mirage, Gold Coast

Thanks for listening!

Risk and Reward