SPICE

Structured Products to Improve Capital Efficiency

Zac Roberts

Discussion Outline

- Risk Management Approaches
- Improving Capital Efficiency
- Derivative Protection Strategies
- Structured Equity Investments
- Alternative Assets
- Capital Efficiency from the Financing Side
- The Strategic Asset Allocation Process

Risk Management Approaches

Avoid Risk
Hold Capital
Transfer to PHs
Transfer to Reins
Transfer to Markets
Manage Internally

- Insurance business is taking on risk
- Can avoid specific risks, e.g. investment
- Limited resource that can be costly
- Extreme events can lead to large losses
- Product design
- Product cycle perhaps reversing
- Can be effective if price is acceptable
- Limited types of risks and limited capacity
- Appetite depends on type of risk
- Potentially much larger capacity
- Implement specific risk mitigation techniques
- The above are all examples of this

Interest Rate Risk: L\&H

- Example: Net short 10 year bond profile
- Capital held against interest rate falls
- Cost of capital rate is constant
- Hedging cost decreases as strike price moves further away from current levels
- Consider hedging where hedge cost is cheaper than cost of capital
- Releases capital and provides tailored protection

Interest Rate Protection: L\&H

- Net short: $\$ 100 \mathrm{~m}, 7.5$ year duration
- Capital for 1% to 2% fall in interest rates $=\$ 7.5 \mathrm{~m}$
- Quarterly ratcheting interest rate option
- Strike is 1% out-of-the-money
- Buy 2 year option and in 1 year sell 1 year option
- If markets don't change, net cost is approx. $\$ 500 \mathrm{k}$
- Benefits
- Cost approx. equivalent to a 7% net cost of capital
- In an interest rate shock your option value increases
- You do not eat through your capital for falls > 1\%

Structured Equity: 2 Year Note

- 95\% Capital Guarantee
- Basket of large cap shares
- High upside participation
- 2 year note with no coupons
- Payout $=$ Notional $*[95 \%+\max (0 \%$, Basket Performance $)]$
- Basket Performance
- All shares contribute actual price performance + Bonus, up to a maximum of the Cap
- Performance calculated since inception

2 Year Equity Note: Back-Testing

IRRs exclude substantial cost of capital savings compared to naked equity

Cost of 2 year 95\% strike put option is approx 5\% pa

Pay less in poor years, more in good years

- Calculations are approximate and ignore corporate actions
- Source: S\&P for ASX 20 composition, Bloomberg for month end closing prices

2 Year Equity Note: Capital Implications

General Insurance	
Debt Component	1.64%
Derivative: Market Risk	1.36%
Derivative: Basis Risk	1.42%
Derivative: Counterparty Risk	0.52%
Total Capital Factor	$\mathbf{4 . 9 4 \%}$
Unfunded TR Swap	$\mathbf{2 . 9 4 \%}$

Life Insurance		
Change in	Equity ${ }^{1}$	
	-25%	
Yield	$+2.0 \%$	-13.6%
Curve Shock		
	-2.0%	-11.3%

Equity \& Rates Down

- Capital Factor = 8.8\%

1. Assumes equity correlation of 1
2. Based on a parallel yield curve shift

Structured Equity: 3 Year Notes

- 100\% Capital Guarantee
- Lower upside participation
- Guaranteed coupons possible
- Equity-linked annual coupon
- Globally Floored
- Individually Capped
- Performance since note issue

MAX $\left[\right.$ Floor $; \sum_{i=1}^{20} w_{i} \times \operatorname{MIN}\left(\right.$ Cap $\left.\left.; \frac{\text { Stock }_{i, t}-\text { Stock }_{i, 0}}{\text { Stock }_{i, 0}}\right)\right]$

Structured Equity: 3 \& 5 Year Notes

- Higher minimum coupon in early years
- Share price has more time to grow in later years

Note Term	3 yr	5yr	Indicative Coupons (4\% pa price increase)			$\begin{array}{\|c} \hline \text { Start } \\ 28 / 2 / 03 \end{array}$
Cap	12\%	15\%	Note Term	3 yr	5 yr	5 yr
Yr 1 Floor	9\%	9\%	Yr 1 Coupon	9\%	9\%	10.5\%
Yr 2 Floor	4\%	4\%	Yr 2 Coupon	8\%	8\%	13.6\%
Yr 3 Floor	3\%	3\%	Yr 3 Coupon	12\%	12\%	13.7\%
Yr 4 Floor		3\%	Yr 4 Coupon		15\%	14.5\%
Yr 5 Floor		3\%	Yr 5 Coupon		15\%	13.2\%
Min IRR	5.4\%	4.5\%	IRR	9.6\%	11.4\%	12.9\%

Alternative Assets

Benefits	Concerns
Higher Risk-Adjusted Returns	Low Liquidity
Low Volatility and Correlation	Lack of Transparency
Improved Portfolio Efficiency	Expensive
	Too Complex

- Overcome the concerns by using beta access to alternative risk premia
- Question remains: Which risk premia?

Basket of Alternatives

- Regular rebalancing to target most efficient asset allocation in terms of return for a given risk level
- Risk Targeting (Volatility)
- Regular rebalancing incorporates process to target specific volatility
- Controlling Extreme Events (VaR)
- Stop loss events trigger immediate asset reallocation

Historical Performance: AUD

Capital Implications

- General Insurers
- Unfunded swap so limited counterparty risk
- Potentially low capital factor due to derivatives
- Life \& Health Insurers
- Minimal/no impact of standard shocks
- Low volatility and correlation
- An appointed actuary could be comfortable with a low capital requirement
- Protection is cheap due to low volatility and flat forwards

Capital Efficiency: Financing Side

- Embed call option collar on absolute return strategy into debt or hybrid instrument
- Include call option cost in interest rate
- Interest Rate $=$ Normal Rate + Call Option Cost - Call Option Payoff
- Decrease expected interest cost and put a cap on maximum cost (less than cost of equity)
- Other structures can further protect down-side

Hedge Fund Enhanced Debt

- 5 year note using 2 FoHFs (Oct 07 pricing)
- Year 1 Interest = Normal Cost -1%
- Year 2+ = Normal Cost $+2.5 \%$ - FoHF Performance
- Break-even if FoHF return approx. 30\% of historical average
- Cost saving is approx. 3.7\% pa if FoHF return equals historical average

Strategic Asset Allocation

- Typical SAA focuses on efficient frontier analysis
- Asset mix is often sub-optimal because not all risk premia are considered
- Especially for insurers, who invest within regulatory constraints
- Better to
- Understand constraints
- Consider how a wide range of risk premia can be combined
- To achieve the maximum expected return
- Within your regulatory constraints and risk appetite

Investment Account Example

- Hedge some risks, e.g. inflation
- Take on risk premia within risk appetite
- FI, equity, structured equity, alternatives
- Typical asset mix is not a long-term strategy
- 70\% bonds, 30\% equity
- Driven by risk management and capital requirements
- Target higher expected return with capital efficiency
- 20\% bonds: yield approx 7.5% pa
- 60% structured equity: 2 year 95% cap guar note: Bonus 10\%, Cap 60%
- 20% alternatives: 1 yr cap guar note, coupon $=2 *$ excess return
- Re-examine hedging, e.g. FI duration

Summary

- Transferring risk to markets can add value
- Consider structured or alternative assets
- Return profile that better meets your risk tolerances
- Capital efficient structure
- Can implement on asset or financing side
- SAA should consider these possibilities
- Appointed Actuary's duty to consider PH interests

Questions

Zac Roberts

- zac.roberts@db.com
- 0282582838

