
Estimating Value at Risk of Portfolio:
Skewed-EWMA Forecasting via Copula

Zudi LU

Dept of Maths & Stats 
Curtin University of Technology

(coauthor: Shi LI, PICC Asset Management Co.)



Talk outline

Why important?
-- Background on financial risk modeling.

EWMA: exponentially weighted moving  average
Why difficult?

-- stylized facts on financial return series
How to solve?

-- Asymmetric Laplace distribution
-- Skewed-EWMA and forecasting of VaR via copula
-- Evaluation of VaR forecasting

Outlook



I. Why important? 
Background on financial risk modeling

Financial practice / globalization poses new 
challenging questions on financial risks, e.g., 
modeling / pricing of

financial risks (market risk, credit risk, etc) and hedging 
derivatives
Financial innovation requires and produces 
new financial instruments: e.g., modeling/pricing 
of securitization of insurance risks
weather risk -- weather derivatives, 
catastrophe risk -- catastrophe insurance derivatives



Financial market risk

Risk management has truly experienced a 
revolution in the last few years. This was started by 
value at risk (VaR), a new method to measure 
financial market risk that was developed in response 
to the financial disasters of the early 1990s.

--Philippe Jorion (2001, preface): Value at risk: The 
new benchmark for managing financial risk



Examples of financial disasters

Barrings, UK, 02/1995, loss $1.33 billion
Metallgesellschaft, Germany, 01/1994, loss $1.34 
billion
Orange county, USA, 12/1994, loss $1.81 billion
Daiwa, Japan, 09/1995, loss $1.1 billion
Asia’s 1997 financial market turmoil



Importance of VaR modeling

Group of Thirty (G-30) in 1993 advised to value 
positions using market prices and to assess financial 
risks with VaR. 
Benchmark risk measure for minimum reserve capital, 
recommended by Basel Accord, the U.S. federal 
reserve bank, and EU’s Capital Adequacy 
Directives, etc.
The greatest advantage: summarises in a single, 
easy to understand number the downside risk of an 
institution due to financial market factors.
Information reporting (passive), controlling risk 
(defensive), managing risk (active)



II. Why difficult?
VaR modeling

VaR: expected maximum 
loss (or worst loss) of a 
financial variable / portfolio 
over a target horizon at a 
given confidence level, α. 
e.g., α=95% 
In terms of return series of 
the target horizon , with a 
distribution F(x), then the 
worst return at the given 
confidence level, α, is:

VaR=F-1(1-α).

Loss prob.5%



Normal distribution
Black-Scholes  model:

-- standard Brownian motion,                         .
Gemoetric retern:                                   

Where                                          .
VaR:

VaR=μ+σФ-1(1-α) ,
Ф(.) is c.d.f. of N(0,1). Practically, assumeμ=0.
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Stylized facts of financial return

Return series show little autocorrelation, but not i.i.d.
Conditional expected returns are closed to zero
Absolute or squared return series show profound 
autocorrelation
Volatility appears to vary over time
Extreme returns appear in cluster
In reality, distribution of return series is skewed and 
heavy-tailed & high-peaked, departure from normality.

-- c.f.,  Taylor (2005): Asset price dynamics, volatility, and prediction. 
Princeton University Press.



Changing volatility: Standard-EWMA

JP Morgan RiskMetrics: Exponentially weighted moving 
average (EWMA) 
assume conditional normality for return series，with volatility 
modeled as IGARCH(1,1) of Engle & Bollersleve (1986),  

,                     ,
or equivalently, 

geometrically declining weights on past observations, assigning greater 
importance  to recent observations.
Nelson and Foster (1994): when returns are conditionally 
normal，EWMA is optimal.
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Changing volatility: Robust-EWMA

Guermat and Harris (2000): based on Laplace distribution

σ-standard deviation
heavier-tailed than normality.

Robust-EWMA: assumeμ=0,
,

It accounts for heavy tails，but no skewness.
Absolute return GARCH: Taylor (1986),  Schwert (1989)
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Importance of skewness

Documents of skewness of return series, e.g.
Kraus and Litzenberger (1976),  Friend and 
Westerfield (1980), Lim(1989),  Richardson 
and Smith(1993), Harvey and Siddique(1999, 
2000), Ait-Sahalia and Brandt (2001), 
Chen(2001)
Simaan(1993): skewness in portfolio
Theodossiou(1998): generalized t distribution，
too complex



Two challenging questions

How to account for the stylized facts of 
skewness and heavy tails simultaneously, 
which may also change with time, in modeling 
and forecasting of VaR?

Changing skewness and kurtosis:
Harvey, C. R. and A. Siddique (1999), “Autoregressive Conditional 

Skewness”, Journal of Financial and Quantitative Analysis 34, 465-
487.

How to account for the complex dependence among 
individual securities?



III. How to solve?

Our work: Skewed-EWMA via copula

A Skewed-EWMA VaR modeling, based on  
Asymmetric Laplace distribution taking into account both 
skewness and heavy tails in financial return series
A varying shape parameter by EWMA, leading 
to changing skewness and kurtosis,  adaptive to time-
varying nature of financial systems.
Skewed-EWMA outperforms both Standard- and Robust-

EWMAs in VaR forecasting.
Complex dependence between individual securities, 

modelled via copula



Motivation: how to estimate quantile

Check function: Koenker & Bassett (1978, Econometrica)

likelihood function:
p.d.f.: asymmetric Laplace distribution

c.f., Yu, Lu & Stander (2003, JRSS, series D) 
Quantile regression: applications and current research areas
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Asymmetric Laplace Distribution

ALD: density function

where
σ-standard deviation，p -shape 
parameter in (0,1).
Laplace distribution:  p=0.5. 
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Skewed EWMA and forecasting

Skewed EWMA Volatility forecasting
Lu & Huang (2007): 
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Joint distribution via copula

Archimedean copulas
• Definition : Let                  be a continuous, strictly 

decreasing, convex function such that           and 
let                  be its pseudo inverse. Then

is an Archimedean copula. 
• Clayton copula function fits the dataset best                   
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Evaluation of VaR forecasting

7 financial return series: 1 Jan. 1992 to 31 Dec. 2001

Confidence level for VaR: α=99%
Likelihood criterion: First 500 observations (estimation sample) 
β=0.998，λ taking 15 values between 0.85 and 0.99.

Name      mean     s.d.       Skew  kurtosis  sample-size



Backtesting methods:

Kupiec(1995) and Christofferson (1998) 
likelihood ratio test:

Let
,             , T – sample size

Unconditional coverage test: 
Assume {It} independent，
H0：E(It) = τ H1：E(It)≠τ
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Independence test:
H0：{It} independent
H1：{It}is a first order Markov process

Conditional coverage test:
H0： E(It) = τ
H1：{It} a first order Markov process
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Unconditional Coverage

• Y axis-failure rate of 
VaR (theoretical  1%)

• X axis- value of λ
• St-EWMA +; 
R-EWMA x; 
Sk-EWMA  •

• Sk-EWMA: about 1% ;
St- and R-EWMA: 
>>1%



Unconditional Coverage test
• Y axis-Likelihood ratio 

value
• X axis- value of λ
• St-EWMA +; 

R-EWMA x; 
Sk-EWMA  •

• Sk-EWMA: all less than 1% 
critical value of 6.63 (pink); 

St- and R-EWMA: mostly 
larger than 1% critical value 
(pink).



Independence test

• Y axis- Likelihood 
ratio value

• X axis- value of λ
• St-EWMA +; 
R-EWMA x; 
Sk-EWMA •

• 5% critical value 3.84 
(blue) ; 
1% critical value 6.63
(pink)



Conditional coverage test

• Y axis-Likelihood ratio 
value

• X axis- value of λ
• St-EWMA +; 

R-EWMA x; 
Sk-EWMA  •

• Sk-EWMA:  less than 1% 
critical value of 9.21 (pink); 

St- and R-EWMA: mostly 
larger than 1% critical value 
(pink)



Portfolio via copula

• Portfolio: Shanghai composite index and 
gold yield (half-half)

• Empirical test: Clayton copula function fits 
the dataset best 
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Portfolio via copula: 
Unconditional Coverage test

• Y axis-Likelihood 
ratio value

• X axis- value of λ
• Sk-EWMA via 

copula: LR is less 
than 1% critical 
value of 6.63 ; 

• RiskMetrics: LR is  
larger than 1% 
critical value.
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Portfolio via copula: 
Independence test

• Y axis- Likelihood 
ratio value

• X axis- value of λ
• 1% critical value 6.63

(blue) 
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Portfolio via copula: 
Conditional coverage test

• Y axis-Likelihood 
ratio value

• X axis- value of λ
• Sk-EWMA:  LR is 

less than 1% critical 
value of 9.21(pink); 

RiskMetrics: LR is  
larger than 1% 
critical value.
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IV. Further work and outlook

Combining skewed-EWMA with historical 
simulation, Monte Carol simulation and 
extreme value theory

Hull,J. and White, A., 1998b, "Incorporating volatility 
updating into the historical simulation method for Value-
at-Risk", Journal of Risk, 1, 5-19.

Extending to risk modeling beyond market 
risk: 

E.g., credit risk, insurance risks
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