

DRIP

Derivatives for Retail Investment Products

Zac Roberts
Mattias Soderberg

Discussion Outline

- Derivatives to manage investment risk
 - Types of risks
 - Comparison of risk management techniques
- Derivatives to manufacture returns
 - Introduction purpose and constraints
 - Building block approach
 - Examples

Two uses of Derivatives

	Manage Risk	Manufacture Returns
Underlying Investment	Range of asset classesInvestor choice	Defined by structureDifferent type of choice
	 Ability to switch 	 Limited ability to switch
Investment Guarantee	Usually simple structureVA, e.g. AXA North	Can be complicatedLeveraged products
Derivative Purpose	 Hedge the investment risk taken on by the product manufacturer 	 Provide the returns as per the product structure
Product Manufacturer	Ongoing risk managementExposed to hedge slippage	 Limited ongoing risk management Limited investment risk exposure

Derivatives to Manage Risk

Major risks introduced by investment guarantees

- Balance Sheet Risk
 - Risk that the investment risk management will be inadequate, exposing the provider to balance sheet losses
- Profit Volatility Risk
 - Risk that the hedging cost will vary with markets, introducing profit volatility
- Decrement Risk
 - Risk that the product design will encourage policyholder behaviour that has an asymmetric impact on the provider

Risk Management Techniques

Cost of External Guarantees

Term	10 years, SP	
Guarantee Type	GMAB	
Asset Mix 1	25% Aust Equ	
No Alternatives	25% Int'l Equ	
	25% Aust FI	
	25% Int'l FI	
Asset Mix 2	20% Aust Equ	
With	20% Int'l Equ	
Alternatives	20% Aust FI	
	20% Int'l FI	
	20% Alternatives	

(% p.a. * NAV)					
	Asset Mix 1	Asset Mix 2			
Annual Ratchet	1.25%	1.06%			
0.0% Accumulation	0.42%				
2.5% Accumulation	0.77%	0.68%			
3.5% Accumulation	1.08%				

Static Hadge: Indicative Cost

Are External Guarantees Expensive?

- AXA North 10 yr guarantee cost = 1.25%
 - Investment strategy 1, draw-down product
- Similar external guarantee cost = 1.8%
 - Guarantee design stronger than AXA North
 - Including alternative assets decreases cost
- Appears expensive because
 - AXA cost excludes investment management fee
 - Price based on implied volatility
 - Paying cost of hedging all risks

Removing Implied Volatility Cost

Static protection with price based on realised volatility

Premium + PF
$$\left(\frac{252}{N}\sum_{t=1}^{N} \ln \left(\frac{\text{Underlying t}}{\text{Underlying t}-1}\right)^2 - \text{VolStrike}^2\right)$$

- Remove BS Risk
- Retain Profit Vol Risk
- Lower expected cost
- Can set volatility sensitivity
- 90% strike 1 year
 ASX 200 option

Hedging all the Risks

- Internal hedging you choose delta only?
- How much risk to retain? % of expected profit

Risk Name	Description	Hedging Instruments	
Delta	Change in value for a small movement in underlying	Underlying Stock, Futures	
Rho (by term)	Change in value for a small shift in yield curve	Futures, Swaps	
Gamma	Change in value of Delta for a small movement in underlying	Options	
Vega	Change in value for a 1 point shift in implied volatilities	Options, Variance Swaps, Forward Starting Variance Swaps, Options on Volatility	
Correl	Change in value for a 1 point shift in correlations	Correlation Swaps	
Gap Risk	Large market movements	External Guarantee	

Derivatives to Manufacture Returns

Purpose

Create broader set of risk units for investors

Constraints

- Easy for investors to understand
- Not loaded with fees

Growing Popularity

- Investors can access alternative pay-offs
- Without providers taking on investment risk

Building Block Approach

Underlying

Payoff

Asset Allocation

Stocks

Long Only

Fixed

Indices

Long-Short

Asset Manager

Proprietary Indices

Simple Derivative

Momentum

ETFs

Complex Derivative

Volatility Target

Managed Funds

Indiv Capped Basket

Markowitz

Alternative Assets

CPPI

Black Litterman

Guaranteed Commodity Fund

- Cap guarantee with reduced upside participation
- Bond + Call option
 - Example:
 - Agricultural Index
 - 4yr term
 - Cap guarantee
 - AUD format
 - ...gives 80%participation on underlying

Structured Equity: 2 Year Note

- Example underlying: ASX 20
- 95% Capital Guarantee
- High upside participation
- Individual caps
- 2 year note with no coupons
 - Payout = Notional * [95% + max (0%, Basket Performance)]
- Basket performance
 - All shares contribute actual price performance + Bonus, up to a maximum of the Cap
 - Performance calculated since inception

2 Year Equity Note: Back-Testing

- Calculations are approximate and ignore corporate actions
- Source: S&P for ASX 20 composition, Bloomberg for month end closing prices

Structure Example: Himalaya Call

What is a Himalaya Call option?

- applied to a basket of underlyings
- performance of the best performing underlying is locked-in for basket performance calculation at maturity
- best-performing underlying is removed after each lock-in
- Himalaya performance is the average of these best performances
- Low vol, high corr, high yielding option currency => good pricing

Himalaya Call: The 4 Golds

- Equal basket of:
 - Merrill Lynch IIF World Gold Fund
 - SAM Sustainable Water Fund
 - Merrill Lynch IIF World Energy Fund
 - Pictet Clean Energy Fund
- Research suggests strong supply/demand imbalances but growth cycles uncertain
 - => Himalaya to lock-in growth
- 4yr AUD
- Annual observations, 100% lock-ins of performance

Underlying: Longevity Beta

Payoff: 7 Year Note (USD)

	Savings	Income	Protected Income
Coupon	Zero	7.35% (LIBOR + 3.5%)	5.85% (LIBOR + 2%)
Minimum Redemption	Zero	Zero	59% (LIBOR + 0%)
Maximum Redemption	221% (LIBOR + 8%)	109% (LIBOR + 4.5%)	100% (LIBOR + 2%)
Expected Redemption	221% (LIBOR + 8%)	109% (LIBOR + 4.5%)	100% (LIBOR + 2%)

Spreads are similar for AUD structures

Summary

- Know the full spectrum of risks to manage
- Managing investment risk can be complicated
- Alternative approach is to use derivatives to manufacture returns
- Goal is to create broader set of risk units
- Products should be easy to understand and not loaded with fees

Questions

Zac Roberts

- zac.roberts@db.com
- 02 8258 2838

Mattias Soderberg

- mattias.soderberg@db.com
- 02 8258 2773