

The Design, Pricing and Marketing of Weather Derivative Products

Jon Tindall

Outline:

- 1) Introduction
- 2) Market Update
- 3) Pricing
- 4) Developments
- 5) Marketing Opportunities
- 6) Where to from here?

Introduction

Introduction

- First formal recorded transaction in 1996 – Enron and Energy-Koch .
 - ➤ HDD swap Milwaukee, winter 1997
 - De-regulation of energy industries – mainly in US and Europe.
 - Initially used as a hedge against variability in electricity supply.

- US Department of Commerce estimates that weather adversely affects:
 - > 70% of all US companies;
 - > 22% of total GDP.
 - 65% of CFO's surveyed believe they have inadequate weather risk management processes.

Contracts

- Wide variety of contract types and underlying variables
- Dominated by temperature futures and options

Contract Types:

- > Futures CME, OTC.
- Options Majority of transactions to date.
- Swaps increasing in popularity.

Underlying Variables:

- > Temperature
- > Rainfall
- > Wind Speed
- Snow Fall
- Barometric Pressure
- > Frost

Weather Markets

- ➤ Mature Over-the-Counter (OTC) market:
 - Existed since early 1990's.
 - Specifically 'tailored' products.
 - Large European banks and insurance brokers.
- Chicago Mercantile Exchange (CME):
 - operates electronic exchange for weather derivatives.
 - futures and option contracts over US and Canadian cities.
 - Approx 75% of total global turnover in 2007.
- ➤ L.I.F.F.E Closed in 2004
 - series of contracts based on daily average temperatures in London, Paris and Berlin.

Temperature Derivatives

Average daily temperature

$$T_i = \frac{T_{\text{max}} + T_{\text{min}}}{2}$$

➤ The most popular derivative contracts are over Heating Degree Days (HDD) and Cooling Degree Days (CDD).

$$HDD = \sum_{month} \max\{0, (\overline{T} - T_i)\}$$

$$CDD = \sum_{month} \max\{0, (T_i - \overline{T})\}$$

- Where the reference level, T, is usually 18°.
- Heating is generally required below the reference temperature and cooling above it.
- Cumulative number of degrees the average temperature was below the reference level

Rainfall Derivatives

Much less common than temperature-based derivatives.

- Market was born out of temperature exposure.
- 'Discreetness' of Rainfall
 - Basis risk greatest barrier to expansion.
 - Modelling difficulties.
- > Requirement for in situ weather stations.
- Lack of natural counter-parties.

Market Update

CME

- ➤ Large increases in total notional value over past 5 years.
- ➤ Reduction in 2007 primarily due to a switch to monthly based contracts.

CME

PWC 2007 WRMA Survey

- ➤ Large increases in rainfall contracts.
- > Temperature based contracts less dominant

Pricing

Pricing

Consistent basis to pricing still a major obstacle

Traditional Black-Scholes assumptions are not adequate:

- A traded underlying asset that can be used to create a hedge, i.e. sold short.
- Log-normal distribution.

Other methods must be found for the pricing of these contracts:

- Alternative BS framework.
 - Forward process
 - Black (76) model
- Martingale approach.
- Numerical simulation.
 - Data Intensive
 - Parameter estimation

Mean Reversion

- Weather variables do not rise or fall without bound.
- Mean reversion strength depends on several factors – most significantly, latitude.
- How do weather forecasts interact with the pricing of contracts.

Mean-reversion component:

$$\frac{dX_t}{dt} = -\gamma \cdot (X_t - \overline{X})$$

Ornstein-Uhlenbeck (OU) process:

$$dX_{t} = \gamma (\overline{X} - X_{t}) . dt + \sigma . dW_{t}$$

Modified OU process:

$$dX_{t} = \left[\gamma(\overline{X} - X) + \frac{d\overline{X_{t}}}{dt} \right] dt + \sigma.dW_{t}$$

Alternative Black-Scholes

- Based on the Black(76) model
- Advantages:
 - > Tractable
 - Closed-form solution
- Limitations:
 - Modelling weather variables as futures process.

Futures Price:

$$Y_t = X_t \cdot e^{r(T-t)}$$

Process s.d.e:

$$dY_t = y[(\mu - r)dt + \sigma dW_t]$$

Modified Black-Scholes p.d.e:

$$\frac{dV_t}{dt} = rV - \frac{1}{2}\sigma^2 y^2 \frac{d^2V}{dy^2}$$

Solution:

$$V(y,t) = BS(ye^{-r\tau},t,r,\sigma)$$
$$= e^{-r\tau}.BS(y,t,0,\sigma)$$

Developments

Insurance Linked Securities (ILS)

- Huge global growth in ILS's
 - > Approx. \$US 8bn in turnover in 2008. Up 30% on 2006.
 - ➤ Effective in transferring much of the losses associated with Katrina.
 - Convergence of Insurance and Capital markets
- Properties of ILS's:
 - > Low correlation to other markets.
 - > Attractive returns.
 - ➤ i.e. high returns compared with the contribution to portfolio risk.
 - Attractive as an asset class massive hedge fund interest.
 - Diversification tool

Brokering Services

WeatherBill

- Retail access to the weather derivatives market.
- Online quotes for customised contracts. Free burning cost analysis.
- Sits as the link between the client and the capital markets. Risks are on-sold to reinsurers.

Storm Exchange

- Diversified weather risk broker.

Issues: Independence and Transparency

Brokering Services

TFS:

- Weather risk broker pricing via Climetrix
- First ever Asian weather risk auction
 - ➤ Tokyo and Osaka closed 27th March 2008.
 - > \$11.25m notional capacity was oversubscribed.
 - Cumulative average temperature contracts for the May September period.
 - Cleared on the CME.
 - Follows similar auctions for Rome > \$64m

Marketing Opportunities

Natural Gas Demand

Weather Derivatives vs. Insurance

Some key differences:

- ✓ <u>Identifiable Loss</u>: There is no need to prove that a loss has occurred. Reduces costs claims assessors, lawyers etc.
- ✓ Moral Risk: Nearly entirely removed referenced to a transparent index
- ✓ Minimal Underwriting: Only counter-party credit risk requires investigation.
- ✓ <u>Immediate Payout</u>: known magnitude.
- ✓ Basis risk

Opportunities

Some of the industries most sensitive to weather variables for which detailed transactions have been recorded in recent years include:

- Agriculture
- Energy
- Construction
- Mining
- Tourism
- Entertainment

Agriculture

- The industry most obviously susceptible to variations in the weather.
- Assist cooperative based crop protection mechanisms verification not required.
- Individual underwriting and claim verification not required.
- 3rd World Applications:
 - Earth Institute and Swiss Re Kenya, Mali and Ethiopia. Sep 2007
 - Protection for 3 villages in distinct geographical locations.
 - Provides \$2m of cover in the event of drought damage crops.
 - Indicates that capacity exists for these ART mechanisms.
- Retail based agricultural solutions are difficult to standardise.
- Need for regulated weather stations in more remote locations to remove basis risk

Construction

- > Temperature:
 - Concrete curing (setting) is temperature dependent.
 - Productivity reduces at unusually high and low temperatures.
 - · 'Stop work' laws.
- > Rainfall:
- Precipitation delays can often represent 10% of contract.
- Subsidence.
- Other exposures:
 - Snow fall.
 - Wind speed cranes and other heavy equipment.

Case Study: Box Office Returns

Study undertaken by WeatherBill

- ➤ 10 years of US box office data (Jan98 Jul07)
- > Tested the effect of weather on box office revenue on:
 - Weekend temperature
 - Weekend precipitation
 - Controlled for the individual films:
 - Popularity
 - Seasonality

Case Study: Box Office Returns

Case Study: US Flight Disruptions

- Bi-variate regression for both weather delays and cancellations.
- Regression over temperature and precipitation.

$$\phi = \alpha + \beta_T \Delta T + \beta_P \Delta P$$

where

- > ϕ represents the disruption measure
- \triangleright β are the regression parameters
- \triangleright ΔT and ΔP are the excess of the temperature and precipitation over the average.

Case Study: US Flight Disruptions

Results:

- Precipitation has significant effect on flight disruptions and cancellations.
 - More prominent in winter months.
 - > More significant in colder climates.
 - Parameters significant at 1% for over 12 airports during winter months
 - Conclusion: Precipitation based contracts could be used to hedge the economic exposure related to flight disruptions.

Where to from here?

Transparency

- Lack of consistent pricing is a major obstacle
 - Practitioners rely on data intensive numerical solutions.
 - Consistency of data therefore consistency in price.
 - Details of recent transactions are generally not publicised.
 - Contain significant proprietary value, i.e. data, models.
 - > Protection of key personnel.
 - Hides the true market appetite for these products.

Data Issues

- Index development:
 - 3rd party transparency
 - End user applications to analyse exposure.
- Free access to standardised data EU
- Registered Weather Stations:
 - Particularly for primary industry applications where each location would require its own approved and monitored weather station.
 - Issue for the more discrete weather variables i.e. precipitation

Thank You

Jon Tindall

email: jon.tindall@milliman.com