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Valuation of Guaranteed Minimum Maturity Benefits in variable

annuities with surrender options

Yang Shen∗, Michael Sherris†and Jonathan Ziveyi‡

May 13, 2015

Abstract

We consider the pricing of guaranteed minimum maturity benefits (GMMB) embedded in
variable annuity contracts in the case where the guarantees can be surrendered at any time
prior to maturity. Surrender charges are imposed as a way of discouraging early termination
of variable annuity contracts. We formulate the problem as an American put option pric-
ing and derive the corresponding pricing partial differential equation (PDE) using hedging
arguments and Itô’s Lemma. Given the underlying stochastic evolution of the fund, we also
present the associated transition density PDE whose solution is well known in the litera-
ture. An explicit integral expression for the pricing PDE is then presented with the aid of
Duhamel’s principle. An expression for the sensitivity of the guarantee fees with respect to
changes in the underlying fund value (called the “delta”) is also derived; the delta can be
used for risk management purposes. We then outline the algorithm for implementing the
integral expressions for the price, the corresponding early exercise boundary and the delta of
the surrender option. We wrap up the paper by presenting numerical results and analyzing
the sensitivity of the prices, early exercise boundaries and deltas to changes in the underlying
variables.
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1 Introduction

A variable annuity is an insurance contract where a policyholder pays either a single premium

or a stream of periodic payments during the accumulation phase in return of minimum guaran-

teed payments from the insurer during the annuitization phase. The guarantees embedded in

variable annuity contracts protect policyholders from unanticipated market movements. These

guarantees exhibit financial option-like features, naturally leading to the way they are valued

in practise. There are two major classes of guarantees; guaranteed minimum death benefits

(GMDBs) and the guaranteed minimum living benefits (GMLBs).

GMDBs are usually offered during the accumulation phase and providing guaranteed payments

of the accumulated value of premiums to beneficiaries in the event of untimely death of the

policyholder during the accumulation phase. GMLBs provide principal and/or income guaran-

tees to help protect the policyholder’s income from declining during the accumulation phase.

GMLBs can further be categorised into three subclasses; namely, GMxB, where “x” stands for

maturity (M), income (I) and withdrawal (W). A GMMB guarantees the return of the premium

payments made by the policyholder or a higher stepped-up value at the end of the accumulation

period, while a GMIB guarantees a lifetime income stream when a policyholder annuitizes the

GMMB regardless of the underlying investment performance. A GMWB guarantees withdrawal

of a stream of payments to policyholder regardless of the contract account value.

Insurance companies usually charge proportional fees on variable annuity accounts in funding

the guarantees. If such fees are too high relative to the performance of the fund, the policy-

holder can choose to surrender the contract or the guarantee prior to maturity in return of a

surrender benefit. The benefits are usually net of surrender/penalty charged enforced as way of

discouraging early termination of the contracts. In this paper we will focus on the valuation of

the GMMB rider embedded in a variable annuity contract in the case where the guarantee can

be surrendered anytime prior to maturity. This valuation problem has received little attention

in the literature. Shen and Xu (2005) consider the fair valuation of equity-linked policies with

interest rate guarantees in the presence of surrender options using partial differential equation

approach. The valuation problem is reduced to a free boundary problem which can be solved

using a variety of numerical techniques such as finite difference schemes. The authors also de-

rive explicit Black and Scholes (1973) type solutions for the case where there are no surrender
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options. Constabile et al. (2008) consider a similar valuation problem and devise the binomial

trees approach to generate fair premium values.

Bauer et al. (2008) provide a general framework for consistent pricing of various types of guar-

antees embedded in variable annuities being traded in the market. The authors present an

extensive analysis of the guarantees by incorporating the possibility of surrendering the con-

tracts anytime prior to maturity. Bacinello (2013) considers the pricing of participating life

insurance policies with surrender options using recursive binomial trees approach.

In this paper we provide alternative derivations and representation of the GMMB embedded in

a variable annuity contract where the policyholder can surrender the guarantee anytime prior

to maturity. Our main result involves the decomposition of the variable annuity contract into a

mutual fund and a GMMB that can be surrendered any time prior to maturity. The surrender

option feature on the GMMB makes valuation problem similar to that encountered in American

put option pricing. We then focus on valuing the surrender option which we present as an

optimal stopping problem. Using techniques developed in Jacka(1991), we then transform the

stopping time problem into a free-boundary problem leading to an equivalent representation in

Shen and Xu (2005). By using the techniques developed in Jamshidian (1992) for transforming

the free-boundary problem to a non-homogeneous partial differential equation (PDE), we derive

the general solution of the PDE in integral with the aide of Duhamel’s principle. Expressions for

the corresponding early exercise boundary and the delta which is the sensitivity of the option

price with respect to changes in the fund value are also derived.

Numerical results quantifying the early exercise boundary profiles, premiums to be charged per

guarantee and the corresponding delta profiles are also provided. Our main finding is that when

surrender charges are relatively high, it is advisable to delay exercising the guarantee early

as significant amount of surrender benefits may end up being consumed by early termination

charges. We perform numerical comparisons between standard American put options and sur-

render options by assessing the impact of continuously compounded insurance charges surrender

fees on the premium to be levied on guarantees. We note that premium values for surrender

options are consistently higher than the corresponding American put option prices.

In this paper, we purely focus on valuing the guarantee component of the variable annuity

contract and use Jamshidian (1992) approach differentiating it from the work of Bernard et al.
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(2014) who use techniques developed in Carr et al. (1992) to derive the representation of the

optimal surrender strategy for a variable annuity contract embedded with guaranteed minimum

accumulation benefits(GMAB). In deriving the pricing framework, the authors treat the entire

variable annuity contract (the mutual fund plus the GMAB) as a single underlying asset and

then derive the corresponding pricing formulas.

The rest of the paper is structured as follows. Section 2 sets up the model dynamics and

relates the valuation of GMMB with an American option pricing problem. The general integral

solution of the valuation problem is presented in Section 3 together with expressions for the

corresponding early exercise boundary and delta of the option. Algorithms for numerically

implementing the valuation expressions are presented in Section 4. Numerical results are then

presented in Section 5 followed by concluding remarks in Section 6. Lengthy derivations and

proofs have been relegated to the Appendices.

2 Problem Statement

Let [0, T ] be a finite horizon and (Ω,F ,Q) be a probability space carrying a one-dimensional

standard Brownian motion Wt = (Wt)0≤t≤T . Here Q is the risk-neutral probability measure.

We denote by E[·] the expectation under Q. Let F = (Ft)0≤t≤T be a filtration generated

by Wt satisfying the usual conditions of right-continuity and P-completeness. We consider a

variable annuity contract embedded with a guaranteed minimum maturity benefit (GMMB)

rider where the policyholder can choose to surrender the guarantee anytime prior to maturity.

The policyholder’s premium will be invested in a fund consisting of units of an underlying asset,

S = (St)0≤t≤T , whose risk-neutral evolution is governed by the geometric Brownian motion

process

dSt = rStdt+ σStdWt, (1)

where r > 0 and σ > 0 are the risk-free interest rate and the volatility of the underlying asset,

respectively. The fund value at time t is denoted as

Ft = e−ctSt, (2)

where c is the continuously compounded insurance charge levied on the fund value by the variable

annuity provider (see Milevsky and Salisbury (2001)). By applying Itô’s Lemma it can be shown
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that the risk-neutral dynamics of the fund value, F = (Ft)0≤t≤T , satisfies

dFt = (r − c)Ftdt+ σFtdWt. (3)

Using risk-neutral arguments, the fund value at initial time net of initial expense charges can

be represented as the discounted expected value of the terminal payout, that is

F0 = E
[

e−rT max(GT , FT )
]

= E
[

e−rTFT

]

+ E
[

e−rT max(GT − FT , 0)
]

, (4)

where FT is the fund value at maturity time, T , given that the fee charged during t ∈ [0, T ] is

equal to c, and GT is the guaranteed value at maturity of the contract. Equation (4) is made

up of two components: the first being the discounted expected value of the terminal fund value

and the second being a put option which is equivalent to a guarantee rider to be exercised only

if the terminal fund value is below the guaranteed amount, GT .

Whilst equation (4) is akin to a standard European put option, various events may necessitate

early termination of the guarantee rider. Among such events include; the guarantee being deep

out-of-the-money, in such a case, the policyholder will find it cheaper not to hold the guarantee

as the probability of it ending up in-the-money will be very low. The second case is when

continuation value of the guarantee is equal to the immediate exercise value prior to maturity.

In the event of the guarantee being terminated prior to maturity, early termination/ surrender

charges will apply such that the resulting the benefit will be

(1− κt)Ft, (5)

with κt being the penalty percentage charged for surrendering at time t. Milevsky and Salisbury

(2001) interpret κt as an incentive to remain in the variable annuity contract and as mechanism

for funding the guarantee. As in Bernard et al. (2014), we assume that κt is exponentially

decreasing and is equal to 1− e−κ(T−t) implying that the surrender benefit at anytime t ∈ [0, T ]

is equal to

e−κ(T−t)Ft. (6)

For optimality in exercising the guarantee (surrender option) early, we will assume that the

inequality κ < c < r holds otherwise the option will be held to maturity. As will be explained
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below, this inequality insures that the surrender charges will not exceed/erode the benefits of

exercising the option early. From equation (4), the variable annuity account at maturity can be

represented as

FT +max(GT − FT , 0), (7)

and anytime prior to maturity1, this can be represented as

Ft = e−r(T−t)
E [FT ] + ess sup

t≤τ∗≤T

e−r(τ∗−t)
E

[

max(GT − e−κ(T−τ∗)Fτ∗ , 0)|Ft

]

, (8)

where the supremum is taken over all stopping times, τ∗. The first component on the right-

hand side of equation (8) is the discounted expectation of maturity value of the fund which can

evaluated easily using a variety of techniques such as the equilibrium asset pricing theory. The

second component is a typical American put option which we reproduce here as

C(t, F ) = ess sup
t≤τ∗≤T

e−r(τ∗−t)
E

[

max(GT − e−κ(T−τ∗)Fτ∗ , 0)|Ft

]

. (9)

The valuation problem in equation (9) is an optimal stopping time problem.

Proposition 2.1. It has been established that the fair value of the American put option in (9)

is a unique strong solution of the free boundary problem2

∂C

∂t
+ (r − c)F

∂C

∂F
+

1

2
σ2F 2∂

2C

∂F 2
− rC = 0, (10)

where Bt < e−κ(T−t)F < ∞ with Bt being the optimal early exercise boundary below which the

put option will be exercised. The partial differential equation (PDE) (10) is solved subject to the

boundary and terminal conditions

C(T, F ) = max(GT − F, 0), (11)

lim
F→∞

C(t, F ) = 0, t ∈ [0, T ], (12)

C(t, Bt) = GT −Bt, t ∈ [0, T ], (13)

lim
F→Bteκ(T−t)

∂C

∂F
= −e−κ(T−t), t ∈ [0, T ]. (14)

Proof. Refer to the proof of Proposition 2.7 in Jacka (1991). Also, the PDE can be derived by

applying standard hedging arguments and Itô’s Lemma to a portfolio consisting of a put option,

C(t, F ), and optimal units of the underlying fund, F , using the arguments presented in Black

and Scholes (1973) where dynamics of F is governed by the SDE presented in equation (3).

1Due to the possibility of surrendering the contract early.
2See Jacka (1991).
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The underlying asset domain for the PDE (10) is bounded below by the early exercise boundary,

Bt. Jamshidian (1992) shows that one can consider an unbounded domain for the underlying

asset by noting that at anytime, t ∈ [0, T ], below the early exercise boundary

C(t, F ) = GT − e−κ(T−t)Ft, (15)

implying that the following equation holds

∂C

∂t
+ (r − c)F

∂C

∂F
+

1

2
σ2F 2∂

2C

∂F 2
− rC = (c− k)e−κ(T−t)F − rGT . (16)

Above the early exercise boundary, the option will be held and satisfies equation (10). Combining

equations (10) and (16), and using the fact that C(t, F ) is a continuous differentiable function

in F at Bt yield

∂C

∂t
+ (r − c)F

∂C

∂F
+

1

2
σ2F 2∂

2C

∂F 2
− rC + 1{F≤Bteκ(T−t)}

[

rGT − (c− k)e−κ(T−t)F
]

= 0, (17)

where 1{x≤B} is an indicator function which is equal to one if x ≤ B or zero otherwise. Equation

(17) is defined on the domain 0 < F < ∞ and this motivates the solution approach we present

below.

We now explain the economic intuition of the inhomogenous term in equation (17). Suppose

that at time t, e−κ(T−t)Ft < G implying that it is optimal to exercise the option. If the

option is not exercised now, it can still be exercised at the next instant t+ dt because the fund

value function is a continuous-time process. All the policyholder will lose by not exercising

now is the instantaneous interest rGdt, but would save on the early termination charges (c −
κ)e−κ[T−(t+dt)]Ft+dtdt such that the total net loss would be

[rG− (c− κ)e−κ[T−(t+dt)]Ft+dt]dt. (18)

However if the variable annuity provider were to compensate the policyholder with an equiva-

lent amount, then the policyholder will be indifferent to delaying exercise to the next instant.

Suppose that the two counterparties agree to prohibit exercise until maturity, and in return, the

policyholder is continuously compensated by the amount equivalent to equation (18) for delaying

optimal exercise when it is optimal to do so. Whenever e−κ(T−t)Ft is above the early exercise

boundary, the compensation will be zero since exercising is not optimal. This leads to the con-

clusion that the guaranteed minimum maturity benefit embedded in a variable annuity with a

surrender option is a typical American put option consisting of a European option component
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plus a contract that pays a continuous cashflow presented in equation (18). An equivalent quan-

tity to the continous cashflow in Jamshidian (1992) is termed the “cost-of-carry” of an option,

which is compensation for delayed exercise.

Also associated with the SDE (3) is the corresponding transition density function denoted here3

as H(τ, F ;F0). This function represents the probability of passage from state F at time-to-

maturity, τ , to state F0 at maturity of the variable annuity contract. The transition density

function satisfies the backward Kolmogorov PDE

∂H

∂τ
= (r − c)F

∂H

∂F
+

1

2
σ2F 2∂

2H

∂F 2
, (19)

where 0 ≤ F < ∞. Equation (19) is solved subject to the terminal condition

H(0, F ;F0) = δ(F − F0), (20)

where δ(·) is a Dirac delta function.

Now let F = ex and C(τ, ex) ≡ V (τ, x) such that the PDE in (17) transforms to

∂V

∂τ
= φ

∂V

∂x
+

1

2
σ2∂

2V

∂x2
− rV + 1{x≤lnB+κτ}

[

rG− (c− k)e−κτex
]

, (21)

where φ = (r − c− 1
2σ

2).

Applying similar transformations to the transition density PDE and letting H(τ, ex) ≡ U(τ, x)

equation (19) becomes

∂U

∂τ
= φ

∂U

∂x
+

1

2
σ2∂

2U

∂x2
. (22)

Equation (22) is solved subject to the terminal condition

U(0, x;x0) = δ(x− x0). (23)

3 Main Results

Having outlined the problem statement in Section 2, we now present the integral representations

of premium values for surrender options together with the corresponding early exercise boundary

3In what follows, we let τ = T − t where τ is the time-to-maturity, and where appropriate we suppress the

dependence of the fund value on t.
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which needs to be determined as part of the solution. We also present the delta expression for

the surrender option which quantifies the sensitivity of the premium values to changes in the

underlying fund.

Proposition 3.1. By using Duhamel’s principle, the general solution of equation (21) can be

represented as

V (τ, x) = VE(τ, x) + VP (τ, x), (24)

where

VE(τ, x) = e−rτ

∫ ∞

−∞
(G− ew)+U(τ, x;w)dw, (25)

and

VP (τ, x) =

∫ τ

0
e−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
[rG− (c− k)e−κ(τ−ξ)ew]U(τ − ξ, x;w)dwdξ. (26)

The first term on the right hand side of equation (24) is the European option component and the

second term is the early exercise premium component. The function, U(τ, x;w) is the univariate

normal transition density function, i.e.,

U(τ, x;w) =
1

σ
√
2πτ

exp

{

−(x− w + φτ)2

2τσ2

}

, (27)

which is a solution to the transition density function PDE in (22).

Proof. The proof proceeds by substituting equation (24) into the the PDE (21) and then pro-

ceeding as detailed in Appendix B of Chiarella and Ziveyi (2014).

Proposition 3.2. The explicit solution of equation (24) can be represented as

V (τ, x) = VE(τ, x) + VP (τ, x), (28)

where

VE(τ, x) = Ge−rτN (−d2(τ, x,G))− exe−cτN (−d1(τ, x,G)), (29)

and

VP (τ, x) = rG

∫ τ

0
e−r(τ−ξ)N

(

−d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ

− (c− κ)ex
∫ τ

0
e−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ, (30)
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with N (d) being a cumulative normal distribution function and

d1(τ, x,G) =
x− lnG+ (r − c+ 1

2σ
2)τ

σ
√
τ

, d2(τ, x,G) = d1(τ, x,G)− σ
√
τ . (31)

Proof. Refer to Appendix A.1.

The early exercise premium component in equation (30) is implicitly dependent on the early

exercise boundary, Bτ , and hence needs to be determined as part of the solution. By using the

value-matching condition presented in equation (13), the early exercise boundary is the solution

to the implicit Volterra integral equation

G−Bτ = Ge−rτN (−d2(τ, lnBτ + κτ,G))−Bτe
−(c−κ)τN (−d1(τ, lnBτ + κτ,G))

+ rG

∫ τ

0
e−r(τ−ξ)N

(

−d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ (32)

− (c− κ)Bτe
κτ

∫ τ

0
e−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ.

Proposition 3.3. The exercise boundary at maturity is

B0 = min

(

1,
r

c− κ

)

G. (33)

Proof. Refer to Appendix A.2

From our earlier assumption that κ < c < r, it turns out that

B0 = G, (34)

which is the guaranteed fund value at maturity. At every other instant prior to maturity the

early exercise boundary is determined by solving equation (32) recursively.

The sensitivity of the guarantee premium values to changes in the underlying factors is crucial

when trading variable annuities. In option pricing, a family of such sensitivities is termed

“Greeks” named after the Greek letters used to denote them. The most popular Greek in

option pricing is the delta, which measures the degree to which an option is exposed to shifts

in the price of the underlying asset. In our current situation, we will interpret the delta as the

sensitivity of the guarantee premium to changes in the fund value. A negative delta implies that

the guarantee fee decreases for every dollar increase in the fund value, so one is effectively short
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the fund through a long put option position. Delta works best for short-term options and does

not tell the probability of how often the fund will hit the early exercise boundary between now

and expiration, but merely the probability that it expires in the money. We present the delta

expression in the next proposition.

Proposition 3.4. By differentiting equation (28) with respect to the underlying fund value, the

delta of the surrender option can be represented as

D(τ, x) = DE(τ, x) +DP (τ, x), (35)

where

DE(τ, x) = −e−cτN (−d1(τ, x,G)), (36)

and

DP (τ, x) = − rG

σex

∫ τ

0
e−r(τ−ξ)n

(

−d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

)) 1√
τ − ξ

dξ

− (c− κ)

∫ τ

0
e−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ

+
c− κ

σ

∫ τ

0
e−(c+κ)(τ−ξ)n

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

)) 1√
τ − ξ

dξ. (37)

with n(d) being a density function of the standard normal distribution.

Proof. Refer to Appendix A.3.

4 Numerical Implementation

Having formulated the guarantee equations as presented in (29) and (30), together with the

early exercise boundary equation in (32) and the corresponding delta in (35) , we now outline a

numerical technique for solving this system of equations.

We adopt the numerical integration techniques developed in Huang et al. (1996) who implement

the American put option pricing framework developed in Kim (1990). Similar techniques have

also being employed in Chiarella and Ziveyi (2014) when pricing American spread call options

where the dynamics of the underlying assets evolve under the influence of geometric Brownian

motion processes.
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The European option component VE(τ, x) involves a cumulative normal distribution function

which can be easily handled by a variety of in-built software applications. However, such software

applications cannot be readily applied to the early exercise premium component VP (τ, x) as this

term involves the entire history of the early exercise boundary, Bτ , which needs to be iteratively

solved at each instant.

The early-exercise premium component also involves an integral with respect to the running

time-to-maturity, ξ, which also makes use of the entire history of the early exercise boundary at

each point in time.

To implement equations (29), (30),(32) and (35), we first discretise the time domain, τ , into M

equally spaced subintervals of length h = T/M and apply the extended Simpson’s rule.

The numerical algorithm is initiated at maturity, τ0 = 0 where the exercise boundary is equal

to the guarantee value presented in equation (34). This serves as the starting value for tracking

the early exercise boundary backwards in time. We denote the time-steps as τm = mh, for

m = 1, 2, · · · ,M . The disretised version of the variable annuity guarantee is then represented

as

V (mh, x) = VE(mh, x) + VP (mh, x), (38)

where

VE(mh, x) = Ge−r(mh)N (−d2(mh, x,G))− exe−c(mh)N (−d1(mh, x,G)), (39)

and

VP (mh, x) = hrG
m
∑

j=0

e−r(m−j)hN
(

−d2

(

(m− j)h, x,B(mh)eκ(m−j)h
))

wj

− h(c− κ)ex
m
∑

j=0

e−(c+κ)(m−j)hN
(

−d1

(

(m− j)h, x,B(mh)eκ(m−j)h
))

wj . (40)

Here, wj are the weights of Simpson’s rule for integration in the ξ direction while h is the

corresponding step size. At each time step, we need to implicitly determine the early exercise

boundary B(mh) which also depends on its entire history up to the current time step. Root

finding techniques are employed to accomplish this task. The discretised version of the value-

matching condition equation can be shown to be

B(mh) = G− V (mh, x), (41)
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where V (mh, x) is presented in equation (38). Likewise, the discretised version of the delta

presented in equation (35) can be represented as

D(mh, x) = DE(mh, x) +DP (mh, x), (42)

where

DE(mh, x) = −e−c(mh)N (−d1(mh, x,G)), (43)

and

DP (mh, x) = −hrG

σex

m
∑

j=0

e−r(m−j)hn
(

−d2

(

(m− j)h, x,B(mh)eκ(m−j)h
)) 1

√

(m− j)h
wj

− h(c− κ)
m
∑

j=0

e−(c+κ)(m−j)hN
(

−d1

(

(m− j)h, x,B(mh)eκ(m−j)h
))

wj (44)

+
h(c− κ)

σ

m
∑

j=0

e−(c+κ)(m−j)hn
(

−d1

(

(m− j)h, x,B(mh)eκ(m−j)h
)) 1

√

(m− j)h
wj .

5 Numerical Results

We now present numerical results obtained from implementing the framework presented in

Section 4. For all numerical experiments that follow, we use the set of parameters presented in

Table 1 unless stated otherwise. As highlighted in Bernard et al. (2014), such sensitivity analysis

helps in shading light on the properties of the early exercise boundary and the guarantee fees.

Note that our parameters choice is arbitrary and the model works for any reasonable choice of

parameter set. The time domain has been discretised into 100 time steps, implying that h = 0.15

years when τ = 15.

Parameter G τ σ r c κ

Value 100 15 0.20 0.05 0.03 0.01

Table 1: Parameters for the Variable Annuity Rider

Figure 1 shows the impact of varying the surrender charge, κ, on the early exercise boundary.

We note that the early exercise boundary increases as the level of κ increases. Increasing levels

of κ result in higher guarantee fees making it prohibitively expensive to surrender the guarantee

13



early as revealed in Table 2. From this table, we note that when c = 3% for instance, varying

the surrender charges from κ = 0 to κ = 3% (last three columns of the table) results in a gradual

increase of guarantee fees. Thus when surrender charges are relatively high, it is advisable to

delay exercising the guarantee early as a significant amount of surrender benefits may end up

being used to settle for the early termination charges.

τ

0 3 6 9 12 15

B
τ

60

70

80

90

100
κ=0
κ=0.005
κ=0.01
κ=0.02

Figure 1: The impact of varying the surrender charges on the early exercise boundary.

We next assess the impact of varying the guarantee level on the early exercise boundary and the

corresponding effects on the premiums to be charged for provision of such guarantees in Figure 2.

In this figure, we vary the guarantee level and keep all other parameters constant as presented in

Table 1. Increasing the guarantee levels result in higher exercise boundaries as revealed in Figure

2a, that is, when the guarantee level is increased, the corresponding exercise boundary is shifted

upwards. As Figure 2b reveals, higher premiums must be levied for increasing levels of minimum

guarantee. It naturally makes sense for insurers to charge higher premiums for increasing levels

of minimum guarantees. Insurers can then use the premiums to devise appropriate hedging

strategies to be used for generating the minimum guaranteed amounts in the event of such

guarantees ending in-the-money or if the policyholder choose to surrender prior to maturity.

One of the most important concepts when trading options is volatility. Volatility measures how

fast and how much prices of the underlying asset move. As such it is of great importance to

understand how premiums to be levied on guarantees respond to changes in volatility. Figure 3

shows the effects of increasing volatility on the early exercise boundary and the premium values.

We note from Figure 3a that as volatility increases, the corresponding early exercise boundary

14
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(a) Assessing how the early exercise boundary

changes by varying the minimum guarantee.
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(b) Assessing the effects of vary the guarantee

level on the premium values

Figure 2: Assessing the impacts of varying the guarantee levels on the early exercise boundary

and premium values. All other parameters are as provided in Table 1

decreases. In option pricing theory, it also well established that an increase in volatility results

in an increase in option prices. This is depicted in Figure 3b where premium values for near in-

the-money and out-of-the-money guarantees increase with increasing levels of volatility. These

findings are consistent with Bernard et al. (2014) who note that higher volatility causes an

increase of the present value of the variable annuity liabilities.
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(a) The impact of varying the volatility level

on the early exercise boundary.
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(b) Surrender option premiums for varying σ.

Figure 3: The effects of varying the volatility on the early exercise boundary and premium

values. All other parameters are as presented in Table 1

It is also of interest to investigate the early exercise boundary and the corresponding guarantee

premiums respond to changes in interest rates. From Figure 4a we note that as the level of
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interest rates is increased, early exercise boundary also increases. The rule of thumb when

trading put options is that higher risk free interest rates mean cheaper put option prices, all

things being equal. This is revealed in Figure 4b where we note a decrease in premiums as interest

rates gradually increase from 3% to 5% for near at-the-money and out-of-the-money options.

The interest rates are fully priced in for deep in-the-money guarantees hence the convergence of

premiums as depicted in the figure.
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(a) The impact of varying interest rates on the

early exercise boundary.
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(b) The impact of varying interest rates on

guarantee premiums.

Figure 4: The effects of varying interest rates on the early exercise boundary and premium

values. All other parameters are as presented in Table 1

It is also important to analyse premiums differences between surrender options and standard

American put options. The formula for a standard put option on a non-dividend paying stock

can be recovered by setting κ and c equal to zero in equation (28). In our analysis we subtract

the implied standard American put option values from the associated guarantee values obtained

by using the parameter set in Table 1. The standard American put option prices have been gen-

erated by implementing the algorithm devised in Kallast and Kivinukk (2003). The results of

this analysis are presented in Figure 5. We note that near at-the-money (around the strike price

which is the guarantee level) guarantee premiums are consistently higher than the correspond-

ing standard American put option prices under the Black and Scholes (1973) framework, with

the largest differences corresponding to at-the-money guarantees. Surrender options are more

expensive to standard American put options and this reflects the effects of surrender charges

and continuously compounded insurance charges levied on the fund value.

In Table 2 we further elaborate on how premium values change for various combinations of κ and
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c. As pointed above, we note that prices corresponding to the standard American put option

case ( c = 0 & κ = 0) are consistently lower than cases where we have nonzero fees and surrender

charges.
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Figure 5: Premium Differences which is equal to the surrender option value minus the standard

American call option value.

We sum up the section by presenting the sensitivities of guarantee premiums to changes on

the underlying fund value for maturities ranging from 6 months to 15 years in Table 3. We

note that deltas for deep in-the-money guarantees with shorter maturities are very close to -1

implying that for every $1 increase in the fund value, the guarantee premium will decrease by $1.

For deep-in-the-money guarantees, the deltas gradually drift from -1 with increasing maturities.

This behaviour is reversed for out-of-the-money guarantees whose deltas become more negative

with increasing maturities.
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Fund Value c = 0, κ = 0 c = 0.01, κ = 0.01 c = 0.03, κ = 0 c = 0.03, κ = 0.02 c = 0.03, κ = 0.03

40 60 65.2470 60 70.2339 74.7314

50 50 56.6159 50 62.8030 68.4884

60 40 47.7468 40 54.8843 61.6104

70 30 38.5665 30.9631 46.3405 53.8201

80 21.3315 29.6139 24.5171 37.7474 45.2010

90 15.6349 22.5599 19.8098 30.6772 37.2821

100 11.7707 17.5265 16.2646 25.2593 31.0000

110 9.0604 13.8665 13.5269 21.0425 26.0470

120 7.1019 11.1369 11.3704 17.7024 22.0809

130 5.6521 9.0587 9.6440 15.0185 18.8631

140 4.5569 7.4486 8.2431 12.8354 16.2234

150 3.7152 6.1828 7.0934 11.04101 14.0371

160 3.0588 5.1749 6.1406 9.5526 12.2110

Table 2: Premium values when G = 100 with all other parameters as presented in Table 1.

Fund Value T = 0.5 T = 1 T = 5 T = 10 T = 15

20 -0.99484791 -0.989725298 -0.949623193 -0.897362991 -0.845196661

40 -0.99484791 -0.989723709 -0.943734302 -0.892194197 -0.853653871

60 -0.994806799 -0.988795379 -0.952461492 -0.926987922 -0.903160608

80 -0.994181179 -0.945265697 -0.734921426 -0.691619866 -0.686952558

100 -0.456332196 -0.440967322 -0.397656989 -0.38784721 -0.39079854

120 -0.076696552 -0.135035882 -0.21952068 -0.233500335 -0.241847212

140 -0.005844514 -0.029891602 -0.122438974 -0.147318762 -0.158547139

160 -0.000263757 -0.005346292 -0.068960555 -0.096189125 -0.108387754

Table 3: Delta values when G = 100 with all other parameters as presented in Table 1.
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6 Conclusion

In this paper we have presented a numerical integration technique for valuing surrender op-

tions in guaranteed minimum maturity benefits embedded in variable annuity contracts. We

formulate the problem using optimal stopping theory and then present a systematic approach

of transforming the optimal stopping time problem into a free-boundary problem. Jamshidian

(1992) techniques are employed to transform the homogenous free-boundary problem to a non-

homogeneous partial differential equation (PDE). An integral expression has been presented as

the general solution by using Duhamel’s principle and this is a function of the transition den-

sity function. The transition density function is a solution of the of the associated Kolmogorov

backward PDE whose solution is well known in literature.

Semi-closed form expressions for the integral terms of the price and the corresponding delta

of the surrender option have been derived and implemented using Simpson’s rule. Numerical

results exploring the impact of surrender fees and insurance charges on the surrender option

prices, free-boundary and the delta have been provided. Efficient plots and tabular results have

been presented to emphasize the impact surrender fees, insurance charges and other variable

parameters on the early exercise boundaries, prices and the delta of the surrender options.

Numerical comparisons with standard American put option prices have been presented and we

have generally noted that surrender fees and the continuously compounded charges make the

premiums for surrender options more valuable as compared to standard American put options.

References

A. R. Bacinello. Pricing Guaranteed Life Insurance Participating Policies with Annual Premiums and Surrender
Option. North American Actuarial Journal, 7(3):1–17, 2013.

D. Bauer, A. Kling, and J. Rub. A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable
Annuities. ASTIN Bulletin, 38:621–651, 2008.

C. Bernard, A. MacKay, and M. Muehlbeyer. Optimal Surrender Policy for Variable Annuity Guaratees. Insur-
ance: Mathematics and Economics, 55:116–128, 2014.

F. Black and M. Scholes. The pricing of corporate liabilities. Journal of Political Economy, 81:637–659, 1973.

P. Carr, R. Jarrow, and R. Myneni. Alternative Characterizations of American Put Options. Mathematical
Finance, 2(2):87–106, 1992.

C. Chiarella and J. Ziveyi. Pricing American options written on two underlying assets. Quantitative Finance, 14
(3):409–426, 2014.

M. Constabile, I. Massabo, and E. Russo. A binomial model for valuing equity-linked policies embedding surrender
options. Insurance: Mathematics and Economics, 42:873–886, 2008.

J. Huang, M. Subrahmanyam, and G. Yu. Pricing and Hedging American Options: A Recursive Integration
Method. Review of Financial Studies, 9:277–300, 1996.

19



S. D. Jacka. Optimal Stopping and American Put. Mathematical Finance, 1(2):1–14, 1991.

F. Jamshidian. An Analysis of American Options. Review of Futures Markets, 11(1):72–80, 1992.

S. Kallast and A. Kivinukk. Pricing and hedging American Options using approximations by Kim integral
equations. European Financial Review, 7:361–383, 2003.

I. J. Kim. Analytical Valuation of American Options. Review of Financial Studies, 3(4):546–572, 1990.

M. Milevsky and T. Salisbury. A real option to lapse a variable annuity: can surrender charges complete the
market? Conference Proceedings of the 11th Annual International AFIR Colloquium, 1, 2001.

W. Shen and H. Xu. The valuation of unit-linked policies with or without surrender options. Insurance: Mathe-
matics and Economics, 36:79–92, 2005.

20



A Appendices

A.1 Proof of Proposition 3.2

We first derive the explicit form of the European option component, VE(τ, x), as follows

VE(τ, x) = e
−rτ

∫ ∞

−∞
(G− e

w)+U(τ, x;w)dw

=
e−rτ

σ
√
2π

∫ lnG

−∞
(G− e

w) exp

{

−x− w + φτ

2σ2τ

}

dw

≡ A1(τ, x)−A2(τ, x), (45)

where

A1(τ, x) =
e−rτ

σ
√
2π

∫ lnG

−∞
G exp

{

−x− w + φτ

2σ2τ

}

dw, (46)

and

A2(τ, x) =
e−rτ

σ
√
2π

∫ lnG

−∞
e
w exp

{

−x− w + φτ

2σ2τ

}

dw. (47)

In simplifying A1(τ, x), we let y = x−w+φτ

σ
√
τ

such that dw = −σ
√
τdy. Also

w = lnG ⇒ y =
x− lnG+ φτ

σ
√
τ

and w = −∞ ⇒ y = ∞.

Equation (46) then becomes

A1(τ, x) =
e−rτ

√
2π

∫ ∞

−d2

Ge
− y2

2 dy = Ge
−rτN (−d2 (τ, x,G)) , (48)

where N (−d2 (τ, x,G)) is a cumulative Normal distribution function with

d2(τ, x,K) =
x− lnG+ φτ

σ
√
τ

. (49)

The second component, A2(τ, x) is simplified by first re-writing it as follows

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{

w − (x− w + φτ)2

2σ2τ

}

dw.

By completing the square and simplifying the above equation we obtain

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{

[x+ φτ ]2

−2σ2τ

}

exp

{

w2 − 2w[x+ {r − c+ 1
2
σ2}τ ]

−2σ2τ

}

dw, (50)

which can also be represented as

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{

[x+ φτ ]2

−2σ2τ

}

exp

{

[x+ (r − c+ 1
2
σ2)τ ]2

2σ2τ

}

exp

{

[x− w + (r − c+ 1
2
σ2)τ ]2

−2σ2τ

}

dw

=
e−rτ

σ
√
2πτ

∫ lnG

−∞
e
x+(r−c)τ exp

{

[x− w + (r − c+ 1
2
σ2)τ ]2

−2σ2τ

}

dw

=
e−cτex

σ
√
2πτ

∫ lnG

−∞
exp

{

[x− w + (r − c+ 1
2
σ2)τ ]2

−2σ2τ

}

dw. (51)

Now, we let

y =
x− w + (r − c+ 1

2
σ2)τ

σ
√
τ

⇒ dw = −σ
√
τ .
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As for the integral limits, w = lnG ⇒ y =
x−lnG+(r−c+ 1

2
σ2)τ

σ
√
τ

and w = −∞ ⇒ y = ∞, hence

A2(τ, x) =
e−cτex

2π

∫ ∞

−d1

e
− y2

2 dy = e
−cτ

e
xN (−d1 (τ, x,G)) , (52)

with

d1(τ, x,G) =
x− lnG+ (r − c+ 1

2
σ2)τ

σ
√
τ

. (53)

By comparing equations (53) and (49) it can be shown that

d2(τ, x,G) = d1(τ, x,G)− σ
√
τ . (54)

Combining the results in equations (48) and (52) yield the European option component presented in equation

(29) of Proposition 3.2.

Next we derive the explicit form of the early exercise premium by simplifying the expression presented in equation

(26) which we reproduce here as

VP (τ, x) =

∫ τ

0

e
−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
[rG− (c− k)e−κ(τ−ξ)

e
w]U(τ − ξ, x;w)dwdξ. (55)

The derivations proceed as those for the European option component case. We split the above equation in two

parts by letting

VP (τ, x) = I(τ, x)− II(τ, x), (56)

where

I(τ, x) =

∫ τ

0

e
−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
rG

1

σ
√

2π(τ − ξ)
exp

{

− (x− w + φ(τ − ξ))2

2σ2(τ − ξ)

}

dwdξ, (57)

and

II(τ, x) =

∫ τ

0

e
−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
(c− k)e−κ(τ−ξ)

e
w 1

σ
√

2π(τ − ξ)
exp

{

− (x− w + φ(τ − ξ))2

2σ2(τ − ξ)

}

dwdξ. (58)

In simplifying the first component, I(τ, x), we let y = x−w+φ(τ−ξ)

σ
√
τ−ξ

, such that dw = −σ
√
τ − ξdy. Also

w = lnB + κ(τ − ξ) ⇒ y =
x− lnB − κ(τ − ξ) + φ(τ − ξ)

σ
√
τ − ξ

and w = −∞ ⇒ y = ∞. Equation (57) then becomes

I(τ, x) =

∫ τ

0

e−r(τ−ξ)

√
2π

∫ ∞

−d2

rGe
− y2

2 dydξ = rG

∫ τ

0

e
−r(τ−ξ)N

(

−d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ. (59)

The second component, II(τ, x), is simplified by first rearranging it as follows

II(τ, x) =

∫ τ

0

(c− κ)e−r(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
e
−κ(τ−ξ) exp{w − (x− w + φ(τ − ξ))2

2σ2(τ − ξ)
}dwdξ.

By completing the square and simplifying the above equation we obtain

II(τ, x) =

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp

{

[x+ φ(τ − ξ)]2

−2σ2(τ − ξ)

}

× exp

{

w2 − 2w[x+ {r − c+ 1
2
σ2}(τ − ξ)]

−2σ2(τ − ξ)

}

dwdξ, (60)
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which can also be represented as

II(τ, x) =

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp

{

[x+ φ(τ − ξ)]2

−2σ2(τ − ξ)

}

exp

{

[x+ (r − c+ 1
2
σ2)(τ − ξ)]2

2σ2(τ − ξ)

}

× exp

{

[x− w + (r − c+ 1
2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}

dwdξ

=

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp {x+ (r − c)(τ − ξ)}

× exp

{

[x− w + (r − c+ 1
2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}

dwdξ (61)

=

∫ τ

0

(c− κ)ex

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp {−(c+ κ)(τ − ξ)} exp

{

[x− w + (r − c+ 1
2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}

dwdξ.

Now, we let

y =
x− w + (r − c+ 1

2
σ2)(τ − ξ)

σ
√

(τ − ξ)
⇒ dw = −σ

√

(τ − ξ).

When w = lnB + κ(τ − ξ) ⇒ y =
x−lnB−κ(τ−ξ)+(r−c+ 1

2
σ2)(τ−ξ)

σ
√

(τ−ξ)
and w = −∞ ⇒ y = ∞, hence

II(τ, x) =

∫ τ

0

(c− κ)ex

2π

∫ ∞

−d1

e
(c+κ)(τ−ξ)

e
− y2

2 dydξ

= (c− κ)ex
∫ τ

0

e
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ. (62)

Combining equations (59) and (62) yields the results presented in (30).

A.2 Proof of Proposition 3.3

Rearrange equation (32) as

Bτ

G
=

[

e
−rτN (−d2(τ, lnBτ + κτ,G)) + r

∫ τ

0

e
−r(τ−ξ)N

(

−d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ − 1

]

×
[

e
−(c−κ)τN (−d1(τ, lnBτ + κτ,G)) + (c− κ)eκτ

×
∫ τ

0

e
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ − 1

]−1

(63)

For simplicity, we let

M1(τ) = e
−rτN (−d2(τ, lnBτ + κτ,G)) + r

∫ τ

0

e
−r(τ−ξ)N

(

−d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ − 1, (64)

and

M2(τ) =e
−(c−κ)τN (−d1(τ, lnBτ + κτ,G)) (65)

+ (c− κ)eκτ
∫ τ

0

e
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

dξ − 1.

23



Next we wish to find lim
τ→0

Bτ

G
with the aid of l’Hôpital’s rule. To this end, we first calculate the derivatives of

M1(τ) and M2(τ) as

M
′
1(τ) =− re

−rτN (−d2(τ, lnBτ + κτ,G))− e
−rτN ′(−d2(τ, lnBτ + κτ,G))

∂

∂τ
d2(τ, lnBτ + κτ,G)

+ rN (−d2 (0, lnBτ + κτ,Bτ )) + r

∫ τ

0

{

− re
−r(τ−ξ)N

(

−d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

− e
−r(τ−ξ)N ′

(

−d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

∂

∂τ
d2

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

)

}

dξ, (66)

and

M
′
2(τ) =− (c− κ)e−(c−κ)τN (−d1(τ, lnBτ + κτ,G))− e

−(c−κ)τN ′(−d1(τ, lnBτ + κτ,G))
∂

∂τ
d1(τ, lnBτ + κτ,G)

+ (c− κ)eκτN (−d1 (0, lnBτ + κτ,Bτ )) (67)

+ (c− κ)eκτ
∫ τ

0

{

− ce
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

− e
−(c+κ)(τ−ξ)N ′

(

−d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

))

∂

∂τ
d1

(

τ − ξ, lnBτ + κτ,Bξe
κ(τ−ξ)

)

}

dξ.

For i = 1, 2, we notice that

lim
τ→0

di(τ, lnBτ + κτ,G) =

{

0, if B0 = G,

∞, if B0 > G.
(68)

So if B0 > G, we have

lim
τ→0

M
′
1(τ) =

r

2
, (69)

and

lim
τ→0

M
′
2(τ) =

c− κ

2
. (70)

Therefore, taking limit in (63) and using l’Hôpital’s rule yield

B0 = min

(

1,
r

c− κ

)

G. (71)

A.3 Proof of Proposition 3.4

The derivation for DE(τ, x) is the same as that for delta of a European put option. We only derive DP (τ, x).

Differentiating VP (τ, x) with respect to the underlying fund value yields

DP (τ, x) = − rG

∫ τ

0

e
−r(τ−ξ)N ′

(

−d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

∂

∂F
d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

)

dξ

− (c− κ)

∫ τ

0

e
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ

+ (c− κ)ex
∫ τ

0

e
−(c+κ)(τ−ξ)N ′

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

∂

∂F
d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

)

dξ

=− rG

σF

∫ τ

0

e
−r(τ−ξ)

n
(

−d2

(

τ − ξ, x,Bξe
κ(τ−ξ)

)) 1√
τ − ξ

dξ

− (c− κ)

∫ τ

0

e
−(c+κ)(τ−ξ)N

(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

))

dξ

+
c− κ

σ

∫ τ

0

e
−(c+κ)(τ−ξ)

n
(

−d1

(

τ − ξ, x,Bξe
κ(τ−ξ)

)) 1√
τ − ξ

dξ. (72)
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