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Introduction 

Introduction 
There is substantial workers’ compensation and product and public liability due to asbestos 
exposure and subsequent disease outcomes. Such diseases include mesothelioma, lung cancer, 
asbestosis and pleural plaques. Prediction of the future burden for asbestos-related diseases is 
both important and challenging. The challenges arise due to uncertainty with: a) describing 
the historical asbestos exposure; b) predicting the future propensity to claim; and c) predicting 
the pattern of future costs. Moreover, there is some complexity in the epidemiological 
relationship between asbestos exposure and the related diseases, where there is a substantial 
lag between exposure and disease incidence. In Australia, the numbers of cases of asbestos-
related disease are continuing to rise, although population-level asbestos exposure declined 
markedly during the 1970s and 1980s. To take account of these patterns, Australian actuaries 
have taken a variety of approaches to predicting asbestos-related diseases. Huszczo et al 
(2004) provided a useful review of the Australian actuarial setting for asbestos-related 
diseases. There is particular interest in mesothelioma, which is both a substantial fraction of 
the total disease burden due to asbestos and a useful marker for population-level asbestos 
exposure.  
 
In the following paper, we focus on the prediction of population-level mesothelioma 
incidence and asbestos exposure. Any such predictions may be useful for actuarial predictions 
for broad portfolios, such as former James Hardie entities or the Dust Diseases Board, or 
portfolios that have a risk profile that is broadly similar to the population-wide asbestos 
exposure. Importantly, these predictions may not be useful for specific industries that do not 
follow the population-wide risk profile; as an example, the predictions are inappropriate for 
the mining industry, where mining of asbestos ceased 10-20 years earlier than the 
consumption of asbestos products.  
 
Note, however, that the pattern of incidence is not directly applicable to the pattern of claims: 
further effort is required by the actuary to calculate the propensity to claim, which is likely to 
be a complex and dynamic process. However, we argue that predictions of mesothelioma 
incidence are important for characterising asbestos exposure and mesothelioma claims. The 
main advantage of mesothelioma incidence is that it is predictable: given that there is a 
smooth biological process between asbestos exposure and mesothelioma incidence, we can 
theoretically reconstruct asbestos exposure from historical mesothelioma incidence and then 
use the reconstructed exposure distribution to predict future mesothelioma incidence. 
 
To outline the paper: first, we develop a theoretical framework for population-level modelling 
of mesothelioma incidence; then we review several earlier models for mesothelioma 
incidence predictions, both theoretically and empirically, using male incidence of 
mesothelioma for Australia and New South Wales; finally, we review the “best” approaches 
for mesothelioma incidence predictions. 

Methods 
We first describe an individual-level rate model for mesothelioma incidence which depends 
on asbestos exposure; we then apply this model to the population context to develop a general 
framework for predictions of mesothelioma incidence.  

Individual-level rate model 
From aetiological studies, we can make the following general observations about the 
relationship between asbestos exposure and mesothelioma incidence (Peto et al 1982; Berry 
1991, 1999). First, the rate of mesothelioma is approximately proportional to linear dose of 
asbestos. Second, mesothelioma incidence depends on time from initial exposure to asbestos; 
given time from initial exposure to asbestos, mesothelioma incidence is independent of age. 
Third, mesothelioma incidence rises by a power of time from initial exposure to asbestos. 
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Fourth, there is evidence for clearance of asbestos from the lungs, which dampens the power 
relationship with time from initial exposure to asbestos. Fifth, there is a period of some years 
between the time of initial malignancy for the first cell through to clinical diagnosis of 
mesothelioma. Sixth, survival from mesothelioma is poor and death is rapid, typically 
occurring within the first year from diagnosis (Leigh et al 1991). 
 
Figure 1: Notation for time, with the tuple (a,t) representing age (a) and calendar period (t) 

u

(0,t-a) (a,t)(a-u,t-u)

Asbestos exposureBirth Current time

 
For an individual i aged a years at time t, we can consider a time u since exposure to asbestos 
(see Figure 1). Note that t-a is the year of birth, representing the birth cohort. Given the above 
observations, the general form of the rate function for mesothelioma incidence given a level 
of exposure to asbestos can be described by 

∫ −−=
a

ii duugutuadosetarate
0

)(),(),(  
 

where represents the linear effect of asbestos dose for an individual i 
exposed to asbestos at time t-u at age a-u, and  represents a function of time since 
exposure. Under the Armitage-Doll model of carcinogenesis with an extension for clearance 
of asbestos from the lungs (Berry 1999), the full form for  is  

),( utuadosei −−
)(ug

)(ug
)()()( τλτβ −−−= uk euug   

where β is the normalising constant, τ is the lag time for time from initial malignancy to 
clinical diagnosis, k is a power term and λ  is the rate of asbestos clearance from the lungs. 
 
For completeness, we could also include a background rate of mesothelioma, however the 
background rate is typically considered to be negligible compared with specific asbestos 
exposures. We could also include exposure for different types of asbestos and for different 
periods and levels of exposure. It is difficult to tease apart the specific composition of an 
asbestos exposure; there is also some contention as to the risk for exposures with different 
compositions. Aetiological studies have typically used time since initial exposure as the 
primary time measure, with a univariate measure of dose. Such a time measure is appropriate 
for a short period of exposure. For a longer period of exposure, we can make the observation 
that the Armitage-Doll model of carcinogenesis is additive; this allows for disaggregating the 
rate by year of exposure, giving: 

)(),(),,( ugutuadoseutarate ii −−=  (1) 
We can now consider Equation (1) in the context of populations. 

Population-level rate model 
To develop a population-level rate model, we can take advantage of the linear form for dose: 
for a given age a and time t with a given time u since exposure, the mean rate across doses 
will be equal to the mean dose times the function : )(ug

)(),(),,( ugutuadoseutarate −−=  (2) 

However, the mean dose function is a bivariate function, describing a dose “surface”, which 
may be overly complicated. Following a suggestion by Hodgson and colleagues (2005), we 
can further simplify the function by assuming that dose is proportional to a function W() for 
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age at  exposure and proportional to a function D() for time at  exposure, that is, 
)()(),( utDuaWutuadose −−=−− . Then the rate function becomes 

)()()(),,( ugutDuaWutarate −−=   
By summing across the time from exposure to asbestos, we can calculate the population rate, 
which takes the rather elegant form: 

∫ −−=
a

duugutDuaWtarate
0

)()()(),(  (3) 

Predictions for the number of cases proceeds by weighting the rate function by the 
at-risk population aged a at time t:  

),( tarate

),(),(),( taPoptaratetacases ×=   
The at-risk population could also be calculated by the size of an initial population times the 
probability of survival to time t for that population. Total cases for a year can be estimated by 
summing the cases across age groups: 

∫
∞

×=
0

),(),()( dataPoptaratetcases  
 

For fitting a model to observed mortality or incidence rates, we typically assume that the 
number of cases has a Poisson distribution (Brillinger, 1986). 

Uncertainty 
Given the small numbers of cases available to fit these models, it is important to also carefully 
represent the uncertainty in any predictions. We separate out model uncertainty, which 
depends on whether we have selected a good model, from statistical uncertainty, which 
depends on the statistical imprecision for a given model. For simplicity, we restrict our 
attention to prediction of mesothelioma incidence; there are further sources of uncertainty 
when attempting to calculate claims and costs. 
 
For assessing model uncertainty, we note that aetiological studies are often based on relative 
small numbers of cases. Moreover, there are many biases in aetiological studies, with 
substantial variation in those biases between studies. As a consequence, there is considerable 
uncertainty as to the “best” model, with several different models providing comparable fits 
within data, whilst potentially providing qualitatively different predictions. The model we 
have selected is based on our understanding of the available data. As a pointer for future 
developments, the function  has historically been based on the Armitage-Doll model of 
carcinogenesis; meanwhile, an alternative class of models for carcinogenesis based on clonal 
expansion may provide other useful predictions. 

)(ug

 
For a given model, there is substantial uncertainty when fitting that model to observed data. 
Such uncertainty can be ascribed to a) the relatively small numbers of cases of mesothelioma 
observed in the population and b) the relative complexity of the models, which are attempting 
to reconstruct some measure of exposure. The exposure reconstruction is particularly 
sensitive to rates at younger ages, where there is paucity of information. The complex models 
may suffer from over-parameterisation and may be non-linear, requiring non-linear 
optimisation of a Poisson likelihood. For models that are stratified by age, the statistical 
analysis is further complicated by the need to summarise across age groups; the modelled 
age-specific estimates are then correlated and variance estimation becomes increasingly 
difficult. Possible approaches to deal with these complications include variance estimation 
using the bootstrap. Note that interval estimation can be for the mean (“confidence intervals”) 
or for the individual predictions (“prediction intervals”), which take account of Poisson 
variability from year to year. 
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Software 
Usefully, available software can now readily deal with fitting non-linear models, combined 
with bootstrap interval estimation. We have found that the open source statistical software 
“R” readily and flexibly supports all of these analyses using the mle() function for maximum 
likelihood estimation and the “boot” package for bootstrapping. There is a range of alternative 
approaches. In SAS, maximum likelihood estimation for non-linear models can be undertaken 
in PROC NLP (SAS/OR) and PROC IML; PROC NLIN can also be used for model fitting via 
iteratively re-weighted least squares. In Microsoft Excel, the Solver, potentially in 
combination with VBA, would be sufficiently flexible to fit many of these models, although 
implementing the bootstrap estimation would be challenging. The econometric software Stata 
has a pleasant likelihood optimiser that would facilitate most of these analyses. Most matrix 
programs have flexible optimisers, including S-Plus, GAUSS and Matlab. Finally, there are 
powerful libraries available for Fortran, C, C++ and Ada for writing compiled code to fit 
these analyses. 

Data sources 
Mesothelioma incidence is reported by state and territory cancer registries. Australia-wide 
estimates have not been reported by the Australian Institute of Health and Welfare since 2004 
for the 2001 calendar year; interestingly, 2002 and 2003 data are expected to be reported 
within the next few months. More timely data are available from individual state cancer 
registries. The patterns for mortality and incidence are very similar as expected survival from 
mesothelioma is short and poor (Leigh et al 1991). The incidence pattern for males is quite 
different from females, where male rates are considerably higher; we restrict further attention 
to males only.  
 
Deaths due to mesothelioma mortality are now regularly reported from the Australian Bureau 
of statistics using ICD-10; however, ICD-9 only reported pleural cancer deaths, which 
comprise 70-90% of mesothelioma deaths. As a consequence, we have a long time series for 
pleural cancer mortality, with a break in the time series in 1998 with the change in coding to 
ICD-10 (see Figure 2). Data for mesothelioma incidence from NSW are currently available 
from 1972 through to 2004. 
 
Figure 2: Mesothelioma incidence and mortality and pleural cancer mortality, Australian males 
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As a summary of the available data on population-wide incidence and mortality, 
mesothelioma incidence data from New South Wales provide a longer and more timely series, 
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albeit with smaller numbers. Analysis of Australian data is restricted by the length of the 
relevant time series, as incidence data are only available from 1983 through to 2001 and the 
time series for mortality has been split by changes in coding, preventing analysis using the 
most recent data. The following analyses will use mesothelioma incidence for males for 
Australia and New South Wales. 

Results: Model comparisons  
In the excellent monograph by Stallard and colleagues (2005) on the Manville Asbestos Case, 
the authors use a taxonomy based on whether asbestos exposure is a) directly measured or b) 
indirectly modelled. Population-wide measures of mesothelioma incidence using both of these 
approaches were applied to the United States in the early 1980s (for a review, see Stallard et 
al 2005). Huszczo and colleagues (2004) proposed a similar taxonomy that included exposure 
models, associated with directly measured exposure, and population regression modelling, 
associated with indirectly modelled asbestos exposure.  
 
As noted by several authors (Atkins et al 1996; Huszczo et al 2004), population-level 
predictions have the inherent problem of not having exposure attached to each incident case, 
so that the exposure-incidence relationship can not be directly analysed or modelled. 
Importantly, indirect modelling of the exposure-incidence relationship has proved to be very 
fruitful; given the paucity of good exposure data, we argue that indirect modelling now 
constitutes state-of-the-art for mesothelioma prediction of population-wide patterns (e.g. 
Stallard et al 2005; Hodgson et al 2005). Indirect estimation has also been used successfully 
for large portfolios (Stallard et al 2005). 
 
As a further dimension for any taxonomy, we propose a distinction should be drawn between 
i) simple calibration of a curve to a data set, which is implicitly fitting one parameter, and ii) 
model fitting of two or more parameters for prediction. Advantages of model fitting include a 
more systematic representation of statistical uncertainty and a more general investigation of 
the available models. 
 
Table 1: Summary model comparison 

Model Model description Data inputs 
Parameters 
estimated 

Andrews and Atkins 
(1993) 

cases(t) from an 
aetiological study 

cases(t) from the 
Wittenoom study 
(Berry, 1991) 

Calibrated to the 
portfolio of interest 

Peto et al (1995) Age-cohort model 
(sub-model of 
Equation (3)) 

Mesothelioma 
mortality rates  

Estimated the age 
and cohort effects 

Stallard et al (2005) Equation (2) Mesothelioma 
incidence or 
mesothelioma claims 

Indirect estimation of 
dose by age of 
incidence and age of 
initial exposure 

KPMG (2006) Exposure model with 
delay distribution 
(sub-model of 
Equation (3)) 

Australian asbestos 
consumption 

Calibrated to the 
portfolio of interest 

Re-implementation 
of KPMG (2006)  
 

Exposure model with 
delay distribution 
(sub-model of 
Equation (3)) 

Australian asbestos 
consumption, 
mesothelioma 
incidence 

Estimated parameters 
for the delay 
distribution 

Clements et al (2007) Equation (3) Mesothelioma 
incidence rates 

Estimated parameters 
for the dose effects 
and the intercept 
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A summary comparison of the different models is given in Table 1 (see previous page). 
Further details of the models are given in the following sections. Note that the models 
proposed by Andrews and Atkins (1993) and Peto et al (1995) have been included for 
historical reasons; we do not propose the routine use of these models. The hypothetical model 
proposed by Finnis (1996) is also closely related to Equation (2). 

Andrews and Atkins (1993) 
In the absence of good exposure data and sufficient a case series, Andrews and Atkins (1991, 
1993) proposed using the case function from a study of the Wittenoom mine in 
Western Australia (Berry 1991) and applied that pattern to the Australian population. This 
was a clever approach. Their model assumed that the dose pattern and population distribution 
over ages and over time in the Wittenoom study would be representative for Australia.  

)(tcases

 
Historical experience has been unkind to the Andrews and Atkins projections: both the “low” 
projection, predicting a flat pattern during the 1990s, and the “high” projection, predicting a 
peak in 2001, were inconsistent with the observed pattern. A comparison between observed 
counts and predictions from Andrews and Atkins, calibrated to the observed frequency in 
1991, is presented in Figure 3. The time axis has been taken out to 2060 for comparison with 
the other models. For Australian males, the Andrews and Atkins model predict 1485 cases for 
the “low” scenario and 2905 for the “high” scenario. For males in New South Wales, the 
Andrews and Atkins model predict 530 cases for the “low” scenario and 1040 for the “high” 
scenario. 
 
Figure 3: Mesothelioma incidence, observed numbers together with predictions from Andrews 
and Atkins (1993), Australian males 
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These projections underestimated numbers and gave an early predicted peak because of the 
different time pattern of asbestos exposure at the Wittenoom mine and Australia as a whole.  
There was a flattening off of cases during the 1990s at Wittenoom with the peak probably 
reached by 2000, but given the continued use of asbestos in Australia beyond the mine's 
closure in 1966 for another 15 years or so, the peak in Australia would not be expected to 
occur until about 15 years later. Usefully, the Wittenoom study has been pivotal in the 
international literature in exploring the functional form for . )(ug
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Alternative approaches could include using the rate function from Wittenoom and then 
applying the population distribution for Australia. This would still be limited by the 
assumption that the exposure experience between the two populations is similar.  

Peto et al (1995) 
Peto and colleagues used age-cohort models to predict mesothelioma mortality in European 
countries (Peto et al 1995, 1999). Their model can be considered as a simplification to 
Equation (3). If we assume a fixed age at initial exposure, at age a0, with one year of 
exposure, then  and W is non-zero between a0aau −= 0 and a0+1 and zero elsewhere. 
Equation (3) then simplifies to .)()(),( 00 aagaatDtarate −+−=  As  represents the 
year of birth for a cohort, the revised model can be recognised as an age-cohort model. The 
age-cohort model assumes that each cohort will follow the same pattern across ages with a 
cohort-specific multiplier (a proportional hazards assumption). This is a consequence of the 
fixed age at initial exposure. However, there is good evidence for asbestos exposure across 
the working life-course, so that the fixed age at initial exposure is a simplifying assumption. 
Moreover, Hodgson et al (2005) found empirical evidence for cohorts following different 
patterns across ages, giving little support for the proportional hazards assumption. This 
assumption is likely to explain why earlier predictions from age-cohort models (Peto et al 
1995, 1999) have tended to peak later than other models.  

at −

 
We have used a naïve approach to modelling an age-cohort model using generalised additive 
models, with interval estimation using the bootstrap. The methods are described in Clements 
et al (2005). Predictions used the assumption that there was negligible asbestos exposure for 
birth cohorts born from 1970 (see Figure 4). Under this poorly supported model, the annual 
number of cases for Australian males is predicted to peak in 2028 (95% confidence interval 
(CI): 2024, 2028), with 39,850 cases (95% CI: 30425, 49555) between 2006 and 2060. There 
is greater uncertainty in the model fit for males in New South Wales than for Australian 
males. The annual number of cases for NSW males is predicted to peak in 2029 (95% 
confidence interval (CI): 2025, 2034), with 14,855 cases (95% CI: 11205, 19495) between 
2006 and 2060. 
 
Figure 4: Observed mesothelioma incidence and age-cohort model predictions, Australian males 
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There is some flexibility in the development of the age-cohort models for predicting 
mesothelioma incidence. We have recently found that incorporating more prior knowledge 
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about the form of the age function can provide predictions that are more consistent with other 
methods, including a model based on work by the Health Safety Executive in the United 
Kingdom (Hodgson et al 2005): see the later section on Clements et al (2007). 

Stallard et al (2005) 
In predicting mesothelioma claims for the Manville Asbestos Case in the United States, 
Stallard et al (2005) used an approach based on Equation (2), where they distributed observed 
cases by time since initial exposure, then indirectly estimated exposure. Stallard et al (2005) 
used two different models. Their first model, based on Walker (1982), used population-level 
mesothelioma incidence and then distributed cases by level of exposure (heavy, light) and by 
timing of exposure using additional data sources. Their second “hybrid” model used 
mesothelioma claims from the Manville Trust and then distributed cases by occupation and 
timing of exposure. For both models, Stallard and colleagues estimated the exposure by: 

)(),(
),,(),(

ugtaPop
utacasesutuadose =−−   

The approaches due to Stallard et al (2005) and Hodgson et al (2005) are similar, as seen from 
comparing Equations (2) and (3). Stallard and colleagues distributed cases by age at initial 
exposure and by level of exposure; in contrast, Hodgson et al (2005) assumed that the dose 
function was separable and integrated across age at initial exposure to fit Equation (3).  
 
Advantages of the approach due to Stallard et al (2005) include the ready incorporation of 
more detailed data to further inform the model building and the availability of the authors’ 
monograph to guide other modelling efforts. As potential disadvantages: the first model used 
by Stallard et al is not immediately amenable to statistical analysis, as the observed cases are 
artificially distributed by age of initial exposure and by level of exposure; and the second 
model requires large numbers of cases that are free of reporting bias (e.g. non-differential 
propensity to claim by age and occupation) to reliably estimate exposure. 
 
To our knowledge, these models have received only limited application in Australia.  

KPMG (2006) 
The model used by KPMG to predict mesothelioma claims for former James Hardie entities 
takes a particularly simple and elegant form, being the convolution between the change in 
exposure over time and a delay distribution: 

∫
∞

−=
0

)()()( duufutDtcases  (4) 

where D(t) is a dose function by time and f(u) is a probability density function for the delay 
from exposure to case diagnosis (or claim). The authors observed that the time from diagnosis 
to claim was typically less than a year.  
 
KPMG assumed that f(u) was a probability density function for a normal distribution with 
mean 35 and standard deviation 10. The authors used a transformation of asbestos products 
available for consumption (= production – exports + imports) to represent D(t); specifically, 
they used 

∫ −=
16

0

)(
16

)( duutnConsumptiotD β
 

 

The authors also assumed that asbestos exposure was negligible from 1987 (see Figure 5). 
The use of cumulative consumption was motivated by the observation that the average claim 
to the former James Hardie entities had had exposure over 16 years. However, we argue that 
an Armitage-Doll model of carcinogenesis is additive for years of exposure, so that exposure 
for an individual over 16 years is equivalent to exposure for 16 individuals over one-year 
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periods, hence the length of individual exposure will not directly enter into the rate 
calculation. Usefully, we can re-interpret this lagged cumulative consumption as a delay 
distribution between products available for consumption and actual exposure, with the delay 
following a flat distribution between 0 and 16 years with a mean of 8 years.  
 
Figure 5: Asbestos products available for consumption and a hypothesised lagged distribution for 
exposure, Australia 
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Model validity was assessed by the predicted peak (2010/2011) and moderate agreement 
between the predictions and observed mesothelioma incidence for Australia. Note that the 
exposure pattern is consistent with a moderate decline in exposure during the early 1980s and 
a rapid decline in the late 1980s. 
 
By calibrating the total counts to the observed count for 2001, we obtain Figure 6.  
The model fit within the observed data is quite reasonable, with a suggestion that the rise in 
the prediction curve may be shallow. For Australian males, the model predicts 10,970 cases 
between 2006 and 2060. Applying the same model to NSW, we predict 3530 cases between 
2006 and 2060. 
 
We re-implemented the KPMG model by fitting the delay distribution, estimating the mean 
and standard deviation for the delay from the hypothesised asbestos exposure distribution 
through until mesothelioma diagnosis. This three parameter model was fitted using a Poisson 
likelihood in R to the observed total counts. The delay distribution had a mean of 39.0 
(se=5.0) with a standard deviation of 10.4 (se=4.5). The imprecision in the estimates is not 
surprising, given that we are fitting the observed annual counts for 19 years using a three 
parameter model. The model predicts a peak in 2014, with 15,045 cases from 2006 through 
until 2060. Re-fitting the model to data from New South Wales, the estimate for the standard 
deviation was not significant. As an alternative approach, we fixed the standard deviation to 
the estimate for Australia (10.4 years) and re-fitted the model. The model predicted 4880 
cases during 2006 to 2060, with a peak in 2013. 
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Figure 6: Calibration of KPMG predictions to mesothelioma incidence for Australian males 
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Figure 7: Predicted number of incident mesothelioma cases, re-implementation of KPMG (2006), 
Australian males 
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Note: For the confidence intervals, the standard deviation for the delay distribution was fixed at 10.4 years. 
 
For interval estimation of the re-implementation fitted to mesothelioma cases for Australian 
males, we found that joint estimation of the three parameters lead to very wide and 
uninformative confidence intervals. If we make the moderately strong assumption that the 
standard deviation of the delay distribution is fixed at 10.4 years, then we find moderately 
close confidence intervals (Figure 7). Such an assumption would be predicated on external 
data supporting the standard deviation being around 10.4 years. 
 
As a sensitivity analysis for the hypothesised delay between products available for 
consumption and exposure, we also re-fitted the model to the data on asbestos products 
available for consumption. This model accounts for the joint delay from products available, 
through to asbestos exposure, and then through to mesothelioma incidence. The model was 
not able to explicitly account for a rapid decline in exposure in 1987. The model predicted 
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very similar estimates to our re-implementation above both for the peak year in cases (2015 
for Australia and 2013 for NSW) and for the total number of cases during 2006-2060 (15385 
for Australia and 4685 for NSW). In summary, the predictions seem to be insensitive to the 
hypothesised delay between products available for consumption and exposure. 
 
Using the theoretical framework, we can use Equations (3) and (4) to show that the function f 
is a function of both time since exposure and calendar period: 

)(),()(),( ugdataPopuaWtuf
u

⎥
⎦

⎤
⎢
⎣

⎡
−= ∫

∞

 (5) 

As the only expression in Equation (5) that depends on time is the population, we could make 
the moderate assumption that the age-specific population does not change over time. Equation 
(4) can then be viewed as having factored age out from Equation (3). Alternatively, we could 
include population in the model, which would require the more mild assumption that the age-
specific density does not change over time. The new model would then take the form: 

)()()()(
0

tPopduufutDtcases ×⎥
⎦

⎤
⎢
⎣

⎡
−= ∫

∞

  

This new model may provide a useful avenue for future modelling. 

Clements et al (2007)  
Recently, we have re-implemented the model used by Hodgson et al (2005) for New South 
Wales. The rate function fitted by Hodgson et al (2005) for mesothelioma incidence 
predictions for the UK Health Safety Executive is very similar to Equation (3); Hodgson and 
colleagues also included a period term for under-diagnosis. Importantly, the model 
formulation was based on a strong understanding of the epidemiology. The implementation 
could be criticised for trying to fit too many parameters and using a univariate optimisation 
routine in Excel to “fit” a multivariable likelihood function. We are not able to generalise the 
peak from the United Kingdom to Australia because of significant differences in the pattern 
of asbestos use. 
 
We have re-implemented this model, reducing the number of parameters to be estimated from 
14 down to five (Clements et al 2007). We used natural splines to represent the function W() 
for change in dose by age, assuming that W() is 1 at age 50 years, and the function D() for 
change in dose by calendar period, assuming that D() is 1 in the 1970 calendar year. We fitted 
two parameters for each set of splines, together with an intercept term. We optimised the 
Poisson likelihood using a non-linear optimiser in R, with interval estimation using the 
bootstrap.  
 
For New South Wales, the estimated pattern of exposure by age, represented by the function 
W(), suggests that there was a rapid rise in exposure from age 20 years, peaking around age 
40 years, with a subsequent decline to negligible levels by age 60 years (see Figure 8). The 
estimated age pattern may be consistent with long periods of asbestos exposure, as suggested 
by KPMG (2006). For the related change in exposure by calendar period, represented by the 
function D(), there were negligible levels of exposure in 1930, with a rapid rise during 1940-
1960, peaking in the mid 1960s, with a subsequent decline during the late 1970s and 1980s 
(see Figure 9). The decline in exposure is similar to the exposure pattern modelled by KPMG 
(2006). The fitted model predicts a peak in the number of cases in 2014, with 6430 (95% CI: 
4920, 9060) cases during 2006-2060 (see Figure 10). 
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Results: Model comparisons 

Figure 8: Estimated dose function by age (with 95% confidence intervals), Clements et al (2007), 
NSW males 

0 10 20 30 40 50 60 70

0.
0

1.
0

2.
0

3.
0

Age (years)

W
(a

ge
)

 
Source: Clements et al, 2007. 
 
Figure 9: Estimated dose function by calendar period (with 95% confidence intervals), Clements 
et al (2007), NSW  males  

1920 1940 1960 1980 2000

0.
0

0.
4

0.
8

1.
2

Year

D
(y

ea
r)

 
Source: Clements et al, 2007. 
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Results: Model comparisons 

Figure 10: Predicted number of incident mesothelioma cases, Clements et al (2007), NSW males 
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Source: Clements et al, 2007. 
 
We have also applied the model to mesothelioma incidence for Australian males (Figure 11). 
The only model assumption that was changed between New South Wales (Clements et al 
2007) and Australia was that the highest knot value for the dose function D() by calendar 
period was 1990 rather than 1980. The model predicts a peak in 2017 (95% CI: 2013, 2024), 
with the total number of cases for 2006-2060 being 21700 cases (95% CI: 16460, 30165). 
 
Figure 11: Predicted number of incident mesothelioma cases, Clements et al (2005) model, 
Australian males 
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One advantage of modelling the age-specific data is that we can represent the number of 
predicted cases by birth cohort and by age group (Figure 12). Moreover, by modelling for age 
at exposure, we can predict the number of cases by age at exposure and by period of exposure 
(Figure 13). These plots can be used to assess the relationship between the future predictions 
and the modelled exposure function. The predictions may also be applied to particular subsets 
of the population, such as for those exposed during a particular period. 
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Figure 12: Predicted number of cases, by age at cancer registration, Clements et al (2007) model, 
NSW males 
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Figure 13: Predicted number of cases, by period of exposure, Clements et al (2007) model, NSW 
males 
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Summary of results 
Predictions from the different models are summarised in Table 2. As previously described, the 
model due to Andrews and Atkins (1993) and the age-cohort model implementation (Peto et 
al 1995; Clements et al 2005) are included for historical reasons; these models, as 
implemented, provide uninformative bounds on the number of cases and are not 
recommended for general use. As a counter-point, other implementations of the age-cohort 
model may be useful. 
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Table 2: Summary of mesothelioma predictions, by model and population 
 Australian males NSW males 

Model Peak
Total count 
2006-2060 Peak

Total count 
2006-2060 

Andrews and Atkins “high” 2001 2905 2001 1040 
Age-cohort model  
re-implementation 

2028 39850 2029 14855 

KPMG (2006) 2010 10970 2010 3530 
KPMG (2006) 
re-implementation 

2014 15045 2013 4880 

Clements et al (2007)  2017 21700 
(95% CI: 16460, 

30165)

2014 6430 
(95% CI: 4920, 

9060) 
 
For the latter three models, there is some variation in the total predicted number of 
mesothelioma cases for Australia. Model predictions for the peak year from the re-
implementation of the KPMG model are similar between Australia and New South Wales. In 
contrast, the peak years differ considerably between jurisdictions for Clements  et al (2007) 
model. Given the limited time series for Australia and the reasonable agreement between 
models for the New South Wales data, the Australian estimates based on the Clements et al 
(2007) model may be high. However, both the re-implementation of the KPMG model and 
the Clements et al (2007) model predict later peaks and considerably higher total counts than 
the base KPMG model.  

Discussion 
In summary, we have used a theoretical framework based on the Armitage-Doll model of 
carcinogenesis to compare models for predicting mesothelioma incidence. We also 
empirically compared those models. Observed data provided broad empirical support for the 
KPMG model, the re-implementation the KPMG model and the Clements et al (2007) model. 
We found that the KPMG model (2006) peaked earlier than the other two models and that the 
KPMG model point estimate for total counts for 2006-2060 was well outside the 95% 
confidence intervals for predictions from the Clements et al (2007) model. 
 
Importantly, we consider that there is reasonable empirical evidence that the peak for 
mesothelioma incidence is later than 2010. This has far-reaching consequences for actuarial 
predictions, where the number of cases out to 2060 may be in excess of 35% higher than the 
number predicted by KPMG (2006). 
 
We propose some general recommendations. First, we recommend that models be fitted to 
observed data, rather than undertaking simple calibrations. The mechanisms generating 
mesothelioma cases in a population are diverse and poorly observed, hence we recommend an 
approach that allows for flexible modelling of such mechanisms. Second, we recommend 
fully representing the statistical uncertainty in model-based predictions. The actuary must 
take account of other sources of uncertainty, however there is such a strong degree of 
uncertainty in the incidence predictions that representing predictions using a mean curve is 
ignoring important information. Third, we recommend that actuaries give closer attention to 
the epidemiological literature when predicting health-related outcomes. The two sets of 
literature provide complementary views on those topics that intersect, including product 
liability and health insurance. Moreover, there is a paucity of researchers who write in both 
sets of literature. There are opportunities for further cross-fertilisation between the two 
disciplines. 
 
How can we assess model misspecification for any of these models? This is at the heart of the 
matter, as we often only observe and model aggregate-level data. The epidemiology suggests, 
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Discussion 

given data on mesothelioma incidence, that the models due to Stallard et al (2005), KPMG 
(2006) and Clements et al (2007) are well-specified. These models are closely related to each 
other and should, in principle, provide very similar predictions. We suggest modelling the 
age-specific data, which provides for richer models and more precise predictions. The hybrid 
model used by Stallard et al (2005) employs more information – however it depends critically 
on having a large number of cases, as satisfied in the Manville Asbestos Case, with no 
reporting bias. This approach deserves closer attention in Australia. It is more difficult to 
assess model misspecification for descriptive models which are predicated on strong 
assumptions, as has been borne out in recent history (e.g. Andrews and Atkins 1993, Peto et 
al 1995).  
 
For model assessment, we can approximate the actuarial “control cycle”, either by assessing 
the fit on annually updated aggregate-level data or by validation using out-of-data model 
assessment, where we fit a model without the last five years of data and assessing the model 
predictions on the last five years (Hastie et al 2001, Clements et al 2005). 
 
Stallard et al (2005) provided a taxonomy based on direct and indirect estimation of asbestos 
exposure. We have focussed on recent methods for population-level modelling and on indirect 
estimation of asbestos exposure. Some of the criticism of population-level modelling is due to 
the fallibility of the age-cohort model. We support population-level modelling as a general 
approach, whilst being aware that some such models have poor properties. Methods using 
direct estimates, usually based on occupational exposures, have received support in the past 
(see the review by Stallard et al 2005) and more recently, particularly by the IAAust working 
group (see Huszczo et al 2004). In remains unclear as to whether reasonable metrics of 
occupationally based exposure will be available. At present, we suggest that methods using 
indirect estimation have better support than direct modelling of asbestos exposure. 
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